windows10下轻薄本复现monodepth2—01配置环境

#原文的环境是Ubuntu,但是由于没有双系统,安装不了gpu版本的cuda,尝试一段时间后放弃。

因此没有双系统想在VMware中安装gpu的cuda,及早放弃!!

#正文开始:

安装anaconda(安装最新版本的就行),在anaconda里,conda create 环境

查看电脑配置(nvcc-v),安装conda、torch、torchvision,我的电脑显卡是MX250,安装了10.2版本的cuda,10.2版本的cuda toolkit,1.10版本的pytorch,8.3.3版本的cudnn,0.11.1版本的torchvision,3.8版本的python。

注意这几个版本都是需要一一对应,可以上网查一下版本对应关系。(cuda版本和cuda toolkit版本一致;cuda和cudnn版本对应;cuda和pytorch版本对应)

下载到官网去下

之前试过好几次都没能成功下载gpu版本的cuda,好像是cudatoolkit和cudnn都下才行

检验是否下载的是gpu版本:python;import torch;print(torch.__version__)

环境配置成功!!

我仔细参考了一篇csdn播客,但是现在找不到了.....,找到的话我放在评论区。

### 复现 Monodepth2 项目教程 #### 准备工作环境 为了成功复现Monodepth2项目,首先需要设置合适的工作环境。这通常涉及安装Python以及必要的库和工具包。 确保已安装`git`用于克隆GitHub仓库,并配置好Anaconda或Miniconda以便管理不同的Python环境[^1]。 ```bash # 安装依赖项并创建新的Conda环境 conda create -n monodepth2 python=3.7 conda activate monodepth2 pip install torch torchvision matplotlib opencv-python-headless numpy tqdm scikit-image tensorboardX imageio visdom future gdown onnxruntime ``` #### 获取源代码与预训练模型 访问官方GitHub页面获取最新的Monodepth2源码版本。此外,还需下载预先训练好的权重文件以加速开发过程或验证实现的有效性。 ```bash # 克隆Monodepth2存储库 git clone https://github.com/nianticlabs/monodepth2.git cd monodepth2/ # 下载预训练模型 gdown --id 1tH8yf95oVZjFwzrEJLdKUWbPmYsDQpzi # KITTI模型为例 tar -xf models.zip rm models.zip ``` #### 数据准备 根据所选的数据集调整路径变量,在此阶段可能还需要对原始数据执行一些预处理操作,比如裁剪、缩放等。对于某些特定应用领域(如自动驾驶),可以考虑使用KITTI这样的公开可用数据集来进行初步测试[^4]。 #### 修改配置文件 编辑`options.py`中的超参数设定,包括但不限于批量大小(batch size)、迭代次数(number of epochs),以及其他影响性能的关键因素。注意保持默认值不变除非有充分理由改变它们。 #### 开始训练 一旦所有准备工作都已完成,则可以通过运行脚本来启动实际的训练流程: ```bash python train.py \ --data_path=/path/to/dataset \ --log_dir=./models/kitti_resnet_multi \ --model_name=kitti_resnet_multi \ --split=eigen_zhou \ --num_layers=18 \ --height=192 \ --width=640 \ --disparity_smoothness=1e-3 \ --scales=[0,1,2,3] \ --min_depth=0.1 \ --max_depth=100.0 \ --frame_ids=[0,-1,1] \ --batch_size=12 \ --num_epochs=20 \ --save_frequency=1 ``` 上述命令行选项定义了一个典型的训练会话;当然也可以依据个人需求灵活调整各个参数的具体取值范围[^3]。 #### 测试与评估 当训练完成后,可利用保存下来的checkpoint加载最佳模型并对新样本进行推理分析。同时还可以借助多种量化指标衡量最终成果的质量优劣程度。 ```python from layers import * import networks import datasets import utils opts = Options() opts.load_model() encoder = networks.ResnetEncoder(opts.num_layers, False) depth_decoder = networks.DepthDecoder(num_ch_enc=encoder.num_ch_enc) loaded_dict_enc = torch.load(os.path.join(opts.log_dir, "encoder.pth")) filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()} encoder.load_state_dict(filtered_dict_dec) loaded_dict = torch.load(os.path.join(opts.log_dir, "depth.pth")) depth_decoder.load_state_dict(loaded_dict) encoder.eval() depth_decoder.eval() with torch.no_grad(): output = depth_decoder(encoder(input_image)) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值