目录
水仙花数
求出0~100000之间的所有“水仙花数”并输出。“水仙花数”是指一个n位数,
其各位数字的n次方之和确好等于该数本身,如 : 153=1 ^ 3+5 ^ 3+3 ^ 3,则153是一个“水仙花数”。
思路:首先先计算出一个数的有几位,然后再求出这个数的每一位,进行求和,最后验证;
注意点:
- 求和时sum一定在循环里面,因为每次要更新;
- 我们在求一个数的每一位或者计算位数的时候一定要在定义一个变量防止循环体内改变循环变量。
#include<stdio.h>
#include<math.h>
int main()
{
int i = 0;
for (i = 0; i <= 100000; i++)
{
int sum = 0;
//这个数一共有多少位
int n = i;
int count = 1;
while (n /= 10)
{
count++;
}
//打印这个数的每一位
n = i;
while (n)
{
sum += (int)pow(n % 10, count);
n /= 10;
}
//判断
if (sum == i)
{
printf("%d ", sum);
}
}
return 0;
}
变种水仙花
变种水仙花数 - Lily Number:把任意的数字,从中间拆分成两个数字,比如1461 可以拆分成(1和461),(14和61),(146和1),如果所有拆分后的乘积之和等于自身,则是一个Lily Number。
例如:
655 = 6 * 55 + 65 * 5, 1461 = 1*461 + 14*61 + 146*1
求出 5位数中的所有 Lily Number。
思路:我们都知道%10能求出一个数的一位,/10能去掉一位。
#include <stdio.h>
int main()
{
for (int i=10000; i<=99999; i++)
{
int sum = 0;
for (int j=10; j<=10000; j *= 10)
{
sum += (i % j) * (i / j);
}
if (sum == i)
printf("%d ", i);
}
return 0;
}