LeetCode59-螺旋矩阵

博客围绕 LeetCode 中 59. 螺旋矩阵 II 题目展开,该题要求生成包含 1 到 n*n 元素且按顺时针螺旋排列的 n x n 矩阵。介绍了三种解法,包括 switch 判断法、不断框定范围法以及类似第二种情况的方法,并阐述了各方法的思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

59. 螺旋矩阵 II
一、题目

给你一个正整数 n ,生成一个包含 1 到 n*n 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

比如下列格式:

1 2 3

8 9 4

7 6 5

示例 1:
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

示例 2:
输入:n = 1
输出:[[1]]
提示:
1 <= n <= 20
二、解法
方法一:switch判断法

思路:(1)初始化一个二维数组,其中元素全部为0,;设置switch的四个判断条件:1、2、3、4分别代表向右、向下、向左、向上。

(2)对这些判断条件进行分析,以3*3矩阵为例,设置i为行指针,j为列指针,首先在初始阶段指针指向的是M[0] [0](i = j = 0),我们通过while循环(这里的判断条件是j < n && v[i] [j] == 0),让指针一直向右走,边走边给数组赋值(v[i] [j]=num++; j++)。到最后i = 0,j = 3,就让 j 回退一位,否则在数组中就越界了。(对应代码中case(1))。

(3)(2)中while循环的跳出主要是因为j = n了,但是到最后也有其他情况,就是在行指针向上走但是列指针不动的时候,往往行指针会碰到已经被赋过值的元素,比如最后从M[2] [0] 往上走时碰到已经被赋过值的 M[0] [0],此时也需要 i 回退一位,即 i++。(对应代码中case(4))。

(4)代码中case(2)和case(3)分别对应向下和向左。

代码:

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> v(n, vector<int>(n, 0));
        int flag = 1;
        int num = 1;
        int i = 0, j = 0;
        while (num <= n*n) {
            switch (flag) {
            case(1)://right
                while ( j < n && v[i][j] == 0 ) {
                    v[i][j] = num++;
                    j++;
                }
                flag = 2;
                j--;
                i++;
                break;
            case(2)://down
                while (i < n && v[i][j] == 0) {
                    v[i][j] = num++;
                    i++;
                }
                flag = 3;
                i--;
                j--;
                break;
            case(3)://left
                while (j >= 0 && v[i][j] == 0) {
                    v[i][j] = num++;
                    j--;
                }
                flag = 4;
                j++;
                i--;
                break;
            case(4)://up
                while (i >= 0 && v[i][j] == 0) {
                    v[i][j] = num++;
                    i--;
                }
                flag = 1;
                i++;
                j++;
                break;
            }
        }
        return v;
    }
};
方法二:不断框定范围

思路:

(1)对矩阵设置一个范围,拿3*3矩阵举例,先是画一个大框框将矩阵框住(左边界和上边界下标为0,右边界和下边界为n-1=2)

(2)先通过for循环遍历第一行进行赋值,然后上边界下标+1 = 1,这样下一次行指针就不会在上移的时候再碰到被赋值了的第一行了,而是只移动到第二行就结束。

(3)然后列指针循环下移并赋值,意味着最右边一列已经被赋过值,那么右边界下标-1 = 1,那么下一次指针右移的时候就不会指到最后一列了。

(4)其他情况类似。

代码:

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> v(n, vector<int>(n, 0));
        int num = 1;
        int left = 0, right = n-1, up = 0, down = n-1;
        while(num <= n*n){
            for(int i=left; i<=right; i++){
                v[up][i] = num++;
            }
            up++;
            for(int i=up; i<=down; i++){
                v[i][right] = num++;
            }
            right--;
            for(int i=right; i>=left; i--){
                v[down][i] = num++;
            }
            down--;
            for(int i=down; i>=up; i--){
                v[i][left] = num++;
            }
            left++;
        }
        return v;
    }
};
方法三、类似第二种情况

(1)首先我们知道,给定一个正整数n,形成一个n^2矩阵,会转n/2圈,因此while循环的范围是count<=n/2。

(2)然后我们根据四条边进行遍历,我们采用左闭右开原则,即算上起始点但不算上中点的点。

(3)总数为偶数则不做处理,为奇数则单独给最后那个值赋值。
在这里插入图片描述

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> v(n, vector<int>(n, 0));
        int start_x = 0, start_y = 0;
        int offset = 1;
        int i = 0, j = 0;//分别代表行号列号
        int count = 1, num = 1;//分别代表圏数和值
        while(count <= n/2){
            //这里必须要给i、j重新赋值,因为后两个for循环需要
            i = start_x;
            j = start_y;
            for(j = start_y; j < n-offset; j++){
                v[i][j] = num++; 
            }
            for(i = start_x; i < n-offset; i++){
                v[i][j] = num++;
            }
            for(; j > start_y; j--){
                v[i][j] = num++;                //第一次循环遍历到左下角结束,(不算左下角的元素)
            }
            for(; i > start_x; i--){
                v[i][j] = num++;
            }
            start_x++; start_y++; offset++;   //缩小圈的范围
            count++;
        }
        if(n % 2 == 1){
            v[n/2][n/2] = num;              //如果总数为奇数,那么单独给中间那个数赋值
        }
        return v;
    }
};class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> v(n, vector<int>(n, 0));
        int start_x = 0, start_y = 0;
        int offset = 1;
        int i = 0, j = 0;//分别代表行号列号
        int count = 1, num = 1;//分别代表圏数和值
        while(count <= n/2){
            //这里必须要给i、j重新赋值,因为后两个for循环需要
            i = start_x;
            j = start_y;
            for(j = start_y; j < n-offset; j++){
                v[i][j] = num++; 
            }
            for(i = start_x; i < n-offset; i++){
                v[i][j] = num++;
            }
            for(; j > start_y; j--){
                v[i][j] = num++;                //第一次循环遍历到左下角结束,(不算左下角的元素)
            }
            for(; i > start_x; i--){
                v