
代码片段
文章平均质量分 73
Hi20240217
每天进步一点点
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Paddle3D-PETRv1 精度测试与推理实践指南
本文介绍了在Paddle3D中使用PETRv1模型进行3D物体检测的完整流程。首先通过Docker配置标准测试环境,安装Paddle3D并下载预训练权重。然后准备NuScenes迷你数据集,生成所需的注解文件。接着对原始模型进行精度测试,获取mAP、NDS等关键指标。最后将训练好的模型导出为推理格式,便于后续部署。文章详细说明了每个步骤的操作命令和参数含义,特别对精度测试结果中的各项指标进行了专业解读,帮助读者理解模型性能评估标准。整个流程涵盖了从环境搭建到最终模型导出的全链路操作,为3D目标检测任务提供了原创 2025-08-22 18:48:10 · 1341 阅读 · 0 评论 -
Apollo-BEV模型性能分析与优化
Apollo-BEV模型性能优化总结 针对Apollo中camera_detection_bev模块的性能不足问题,通过模型拆分与TensorRT加速实现显著优化: 性能分析:通过Timeline分析模块耗时,发现PaddleNet推理占主要开销(1924ms)。 模型拆分:将模型分为CNN(Backbone)与其他部分,CNN使用ONNX-TRT加速,其余保持Paddle推理。 TRT优化:在Tesla T4上,INT8精度使总耗时从1919ms降至376ms(提升5.1倍),精度损失仅0.4%;Jets原创 2025-08-15 11:09:58 · 918 阅读 · 0 评论 -
用ICO图标拼成汉字
用普通ICO图标拼接出完整的汉字原创 2025-08-15 10:44:42 · 807 阅读 · 0 评论 -
PaddleOCR从小红书视频中提取字幕并生成思维导图
摘要:本教程介绍使用PaddleOCR从小红书视频提取字幕并生成思维导图的技术方案。通过Docker环境隔离,结合OCR图像识别和语音转文字技术,实现视频内容的高效提取。核心步骤包括:1)创建CUDA加速的Docker容器;2)下载目标视频;3)采用OCR识别字幕区域;4)结构化处理文本内容。该方案可提升90%的信息获取效率,适用于中文视频内容的知识抽取场景。原创 2025-08-15 10:09:24 · 1101 阅读 · 0 评论 -
Apollo平台下相机和激光雷达手眼联合标定
Apollo平台下相机与激光雷达联合标定指南 摘要:本文介绍Apollo自动驾驶平台中相机与激光雷达联合标定的关键技术。通过建立坐标系转换关系(包含内参矩阵K和外参矩阵[R|t]),实现多传感器数据精确对齐。标定过程包括:1)数据采集(同步记录图像和点云数据);2)预处理(提取传感器数据);3)数学模型求解(通过标定板建立相机与激光雷达的变换链T_c←l = T_c←w * inv(T_l←w))。文章详细推导了投影方程和刚体变换方程,并提供了Apollo平台下的实际操作命令和Python代码示例,帮助开发原创 2025-08-11 08:09:40 · 787 阅读 · 0 评论 -
基于Web的交互式坐标系变换矩阵计算工具
本文介绍了一个基于Web的交互式坐标系变换矩阵计算工具。该工具通过可视化界面解决三维空间中坐标系转换的复杂计算问题,支持实时调整参数并自动生成变换矩阵。主要功能包括:1)定义基坐标系和相机坐标系;2)交互式控制位置和旋转参数;3)自动计算4×4变换矩阵和四元数表示。该工具特别适用于计算机视觉、机器人学等领域,能直观展示坐标系变换关系,简化外参标定等计算流程。用户可通过调整欧拉角和平移向量,实时观察变换效果并获得对应的数学表示。原创 2025-08-08 20:33:43 · 1115 阅读 · 0 评论 -
Apollo中三种相机外参的可视化分析
本文分析了自动驾驶系统中相机外参的可视化方法,对比了三种来源的外参数据(NuScenes数据集、Apollo BEV模型和Apollo园区版)。通过代码示例展示了从NuScenes数据集提取相机外参(位置和旋转四元数)的详细过程,并实现了外参数据的3D可视化。该方法可帮助验证标定质量、检测标定错误、理解感知系统覆盖范围以及确保多传感器融合的空间对齐关系。文章提供了完整的Python实现,包括环境准备、数据提取和可视化步骤。原创 2025-08-06 20:00:22 · 1011 阅读 · 0 评论 -
如何用VSCode调试Apollo园区版:从零开始完整指南
本文详细介绍了使用VSCode调试Apollo 9.0园区版camera_detection_bev模块的完整流程。主要内容包括:1)环境准备,需使用VSCode v1.85版本以兼容Ubuntu 18.04的glibc 2.27;2)通过捕获完整编译命令生成compile_commands.json文件,确保代码智能跳转和补全功能;3)配置SSH远程调试通道,实现本地VSCode调试容器内程序;4)搭建运行时环境,通过符号链接解决开发与运行环境路径不一致问题。该指南涵盖了从编译数据库生成到远程调试配置的全原创 2025-08-05 09:00:27 · 826 阅读 · 0 评论 -
Flask搭建HTML文档服务器-轻松共享和浏览文档
本文介绍如何使用Flask框架搭建HTML文档服务器,实现团队文档的便捷共享。相比PDF,HTML文档具有无缝阅读、响应式设计、加载快速等优势。服务器提供目录浏览、文档预览、智能排序和面包屑导航功能,支持多终端访问。搭建步骤包括创建Flask应用核心代码,设置环境变量指定HTML目录,实现路径安全检查,并自动按数字排序文件。系统还包含响应式界面设计,确保在各类设备上都能获得良好浏览体验。该方案适合团队集中管理技术文档、产品手册等HTML内容。原创 2025-08-04 11:14:18 · 1035 阅读 · 0 评论 -
让Markdown文档也能“知道“谁在阅读:HTML嵌入阅读跟踪指南
本文介绍了如何为Markdown生成的HTML文档添加阅读跟踪功能,帮助了解文档的实际使用情况。方案包含三个核心部分:1)客户端HTML文档通过JavaScript收集阅读信息;2)转换工具将图片转为Base64并插入跟踪脚本;3)服务器端接收和分析数据。关键组件包括图片转换工具(convert.bat)、跟踪脚本嵌入工具(emb.py)和服务器接收程序(main.py)。该技术特别适合知识交付和远程协作场景,能跟踪文档打开时间、设备等关键信息,且通过Base64编码确保文档完整性。原创 2025-08-04 09:31:55 · 888 阅读 · 0 评论 -
手把手教你为Apollo自动驾驶系统配置多摄像头系统
本文详细介绍了如何为Apollo自动驾驶系统手动配置多摄像头系统(6路环视)。首先分析了摄像头驱动的技术原理,包括v4l2框架和Apollo的CameraComponent模块。然后通过v4l2命令识别摄像头硬件设备,并验证各摄像头功能。重点讲解了如何进入Apollo容器环境,分析原始配置,包括DAG文件和相机参数配置文件。配置过程涉及设备路径映射、数据通道定义等关键参数设置。该手动配置方法能深入理解Apollo摄像头驱动架构,灵活应对特殊硬件组合需求,为后续标定和感知模块开发奠定基础,适用于需要定制化摄像原创 2025-08-03 21:36:59 · 954 阅读 · 0 评论 -
主机序列号的修改方法与原理
摘要:主机序列号是设备的唯一硬件ID,存储在BIOS/UEFI芯片、设备树文件或DMI信息表中。修改序列号可用于隐私保护、软件授权等场景,但需注意法律风险。本文介绍两种方法:1)用户空间拦截read函数,通过LD_PRELOAD加载自定义库动态修改返回值,操作简单但仅对特定程序有效;2)内核驱动直接修改DMI内存区域,需编译加载内核模块,效果更彻底但风险较高。两种方法均提供了详细的操作步骤和原理说明,适用于不同技术需求的用户。 (149字)原创 2025-08-03 14:22:30 · 687 阅读 · 0 评论 -
Apollo9.0园区版:自定义保存与可视化control/planning字段指南
Apollo 9.0园区版自定义数据可视化指南:针对系统自带工具无法提取自定义字段的问题,本文提出基于Protobuf反射机制的解决方案。通过递归遍历消息树结构,动态提取所有叶子节点数据并生成唯一路径标识(如debug.simple_lon_debug.acceleration_cmd),实现control和planning模块任意字段的保存与分析。操作步骤包含:1)创建动态字段提取脚本;2)分别保存control和planning模块数据到指定目录;3)支持数值型与文本型字段的自适应处理。该方法突破了原生原创 2025-07-25 11:51:36 · 906 阅读 · 0 评论 -
支持OCR和AI解释的Web PDF阅读器:解决大文档阅读难题
摘要:本文介绍了一款支持OCR和AI解释的Web版PDF阅读器,专为解决移动设备阅读扫描版PDF的痛点而设计。该工具具备区域选择OCR、文字编辑和AI智能解释功能,通过服务端处理突破移动设备性能限制。技术实现采用PDF.js前端渲染+百度OCR API+DeepSeek大模型的架构,提供智能区域选择、阅读记忆等特色功能,并详细说明了环境配置和界面实现代码。该方案显著提升了长文档的阅读效率和理解深度。原创 2025-07-24 20:46:41 · 370 阅读 · 0 评论 -
GitLab企业版部署与许可证生成完整指南
GitLab作为业界领先的DevOps平台,为企业提供了从代码管理到CI/CD的完整解决方案。然而,GitLab企业版需要有效的许可证才能解锁全部功能。本文将详细介绍如何通过Docker部署GitLab企业版,并生成永久许可证的完整过程。原创 2025-07-19 00:51:23 · 991 阅读 · 0 评论 -
基于ROS2进行相机标定,并通过测试相机到棋盘格之间的距离进行验证
在视觉系统中,**相机标定**是获取准确空间信息的关键步骤。本文介绍基于Docker创建**可移植、可复现**的ROS2相机标定环境,并通过测试相机到棋盘格之间的距离进行验证。也可用于某些场景下的**单目测距离**。原创 2025-07-18 14:27:21 · 1396 阅读 · 0 评论 -
macOS 12.7.6部署Ollama+Dify避坑指南
本文介绍了在macOS 12.7.6系统下部署Ollama和Dify的详细步骤及避坑指南。主要内容包括:1)关闭系统完整性保护(SIP)以允许修改系统目录;2)安装特定版本的Docker(2.1.0.5)和docker-compose(v2.38.2)以避免兼容性问题;3)配置Ollama服务并下载nomic-embed-text和deepseek-r1:7b模型;4)针对macOS调整Dify的docker配置文件,包括延长超时时间、修改存储路径、增加资源限制等关键设置。文中提供了完整的命令操作步骤和配置原创 2025-07-17 17:26:37 · 1163 阅读 · 0 评论 -
演示扩展卡尔曼滤波在无人驾驶多传感器融合中的应用
摘要 本文提出了一种基于扩展卡尔曼滤波(EKF)的无人驾驶多传感器融合方法,用于提高车辆状态估计精度。系统整合GPS(1Hz)、IMU(20Hz)和LiDAR(10Hz)数据,通过非线性运动模型预测和传感器观测更新两个阶段实现状态融合。EKF使用雅可比矩阵处理非线性系统,并针对不同传感器特性(如GPS易受遮挡、IMU存在累积误差)设计噪声模型。实验验证了该方法能有效克服单一传感器局限,提供更鲁棒的车辆位置、速度和航向角估计。完整实现包括运动模型仿真、传感器噪声建模、EKF算法和可视化模块。原创 2025-07-15 15:52:43 · 322 阅读 · 0 评论 -
自动化导出微信聊天记录的技术方案:基于Python的屏幕操作与剪贴板监控
本文提出一种基于Python的自动化方案,通过屏幕操作和剪贴板监控实现微信聊天记录导出。针对工作群消息过载问题,该技术采用pyautogui模拟用户操作,结合坐标定位工具获取消息位置,自动执行双击、复制、保存等操作。系统包含重复检测机制,通过哈希值比对避免重复存储,当连续30次重复时自动停止。实现步骤包括:1)使用热键Alt+9捕获屏幕坐标并复制;2)运行自动化脚本导出聊天记录至Markdown文件;3)后续可结合大语言模型生成摘要。该方法无需微信API,仅需标准Python库,有效解决非工作时间消息干扰问原创 2025-07-13 07:15:30 · 447 阅读 · 0 评论 -
自动化Trae Apollo参数解释的批量获取
本文介绍了一种自动化获取百度Apollo自动驾驶平台参数解释的方法。针对Trae工具缺乏API接口和手动查询效率低的问题,设计了一个Python脚本,通过模拟人工操作实现参数解释的批量获取。脚本采用图像识别技术定位界面元素,建立"输入-查询-复制-保存"的自动化流程,并通过OpenCV检测按钮状态确保操作准确性。该方法解决了Apollo 9.0版本2000多个参数的手动查询难题,显著提升研究效率。实现步骤包括环境配置、界面坐标获取、参数列表设置和自动化执行,最终将所有参数解释按章节保存为原创 2025-07-09 20:56:06 · 907 阅读 · 0 评论 -
Apollo 9.0组件创建:管理配置、集成第三方库、订阅消息
本文介绍了在Apollo 9.0中创建自定义组件的完整流程。主要内容包括:组件在自动驾驶系统中的重要作用(功能扩展、模块化开发等);使用buildtool工具创建名为"candy"的空组件;配置组件参数和消息格式;以及编译流程。操作步骤详细展示了从命令行创建组件骨架、定义proto消息格式到最终编译的全过程,为开发者提供了扩展Apollo系统的实用指南。原创 2025-07-07 18:13:47 · 591 阅读 · 0 评论 -
使用Apollo AEM工具编译调试感知模块与场景模拟实战
本文介绍了如何使用Apollo环境管理工具(AEM)进行自动驾驶感知模块的开发调试与场景模拟。主要内容包括:1)AEM工具安装与环境配置,支持GPU加速和模块化编译;2)数据包与感知模型的获取安装方法;3)感知模块的源码修改、编译与调试流程;4)通过Dreamview平台进行可视化测试和场景模拟。文章提供了详细的命令行操作步骤,帮助开发者快速搭建开发环境,实现感知模块的高效调试与验证,适用于自动驾驶技术开发者和研究人员。原创 2025-07-03 10:23:04 · 1343 阅读 · 0 评论 -
在Ubuntu上多网卡配置HTTP-HTTPS代理服务器
当服务器多个网卡,有的通外网,有的通局域网,有的是专线。如何在这样的服务器上搭建一个HTTP/HTTPS代理服务器,并指定流量出口。原创 2025-07-02 09:17:30 · 825 阅读 · 0 评论 -
Python实现NuScenes数据集可视化:从3D边界框到2D图像的投影原理与实践
本文介绍了使用Python实现NuScenes数据集3D边界框到2D图像投影可视化的方法。NuScenes作为自动驾驶领域的重要数据集,包含多传感器数据和3D物体标注。文章详细解析了从世界坐标系到图像坐标系的转换流程,包括车辆位姿、相机标定等关键步骤,并提供了完整的Python实现代码。通过3D到2D投影公式(X/Z,Y/Z)和相机内参矩阵,可将物体3D位置准确映射到图像上,为自动驾驶算法开发和数据分析提供可视化基础。文中还包含数据集下载、环境配置和技术实现细节,帮助读者快速掌握这一关键技术。原创 2025-07-01 13:51:36 · 775 阅读 · 0 评论 -
从Apollo record文件中提取坐标信息绘制地图轨迹
摘要: 本文介绍从Apollo自动驾驶记录文件中提取车辆轨迹坐标的方法。首先下载并解压Apollo平台提供的record文件,通过命令行工具查看文件包含的定位信息通道。关键步骤是通过Python脚本解析定位数据,将UTM坐标系转换为WGS84经纬度,并使用folium库绘制地图轨迹。该方法可实现自动驾驶测试路线的可视化,便于分析定位精度和复现测试场景。(150字)原创 2025-06-30 16:08:20 · 936 阅读 · 0 评论 -
使用Apollo Cyber RT Python API处理图像消息
Apollo Cyber RT图像处理指南:本文介绍使用Apollo Cyber RT的Python API处理自动驾驶图像数据。主要内容包括:1)从record文件中提取图像数据并解析protobuf消息;2)构建图像发布节点,将图像转换为protobuf格式并持续发布;3)关键步骤详解,包括二进制数据转换、消息头设置和颜色空间处理。这些方法适用于自动驾驶系统的离线数据分析和实时消息处理场景,为感知算法开发和调试提供基础支持。代码示例展示了完整的图像提取和发布流程。原创 2025-06-30 10:19:14 · 927 阅读 · 0 评论 -
自动微信聊天:ADB+LLM+OCR实现消息自动回复
摘要:本文介绍了一个基于ADB+LLM+OCR的微信自动回复工具,旨在替代低效监工角色。该工具通过ADB连接安卓模拟器,截取微信聊天界面,使用OpenCV检测画面变化,EasyOCR进行文字识别,并实现自动回复功能。核心流程包括设备连接检测、智能截屏监控、OCR文字识别和ADB模拟操作,技术要点涉及图像差异计算、多语言OCR和ADB命令控制。文章还提供了详细的环境配置、坐标校准方法和回复逻辑定制建议,可扩展集成LLM实现智能意图分析。原创 2025-06-28 10:29:48 · 832 阅读 · 0 评论 -
Apollo v9.0.0-rc-r10 基础测试
本文记录了Apollo v9.0.0-rc-r10基础测试的完整流程。主要内容包括:参考文档链接、常见问题解决方法(如编译段错误和显示问题)、详细操作步骤(环境准备、源码下载与修改、Docker容器创建、模型安装与管理)。测试环境为Ubuntu 20.04系统,使用NVIDIA驱动和Docker容器。重点解决了编译过程中遇到的Eigen段错误问题,并通过amodel工具成功安装了多种感知模型。文档提供了从环境搭建到模型验证的全流程指导,对Apollo 9.0版本的使用具有实用参考价值。原创 2025-06-27 21:00:32 · 980 阅读 · 0 评论 -
x86-64安装编译Apollo 9.0 aarch64版本
本文详细介绍了在x86-64架构主机上编译Apollo 9.0 aarch64版本的方法。通过Docker容器提供隔离环境,并借助QEMU实现ARM指令集模拟,解决了跨架构编译的兼容性问题。文章提供了完整的操作流程,包括Docker多架构配置、QEMU模拟器安装、Apollo源码获取与编译环境准备等步骤,特别针对PCL库检测逻辑缺陷和GPU平台识别等常见问题给出了解决方案。该方案不仅适用于Apollo项目,也可推广到其他复杂项目的跨架构构建场景,有效提升了开发效率。原创 2025-06-25 20:10:02 · 755 阅读 · 0 评论 -
微信小程序自动截图: 轻松保存答题进度
摘要:本文介绍一种解决答题类微信小程序无法跳页和进度丢失问题的自动化方案。通过ADB工具和安卓模拟器实现自动截图和翻页功能,使用Python脚本控制流程,包含智能停止机制。操作步骤包括环境配置、脚本运行和效果查看,适用于驾考题库等场景,可大幅节省手动操作时间。进阶技巧还涉及PDF生成和OCR识别。该方法简单易行,适合技术小白掌握使用。原创 2025-06-17 20:35:15 · 936 阅读 · 0 评论 -
用bilibili一个讲座视频,生成一本科普书籍
本文介绍了一种将B站讲座视频自动转化为科普书籍的系统方案。该方案通过智能文本处理、知识提炼与结构化、专业知识普及和自动化书籍生成四大功能模块,解决了原始讲座内容冗长、术语难懂、知识点分散等问题。系统采用64K上下文管理、批量处理优化等先进技术,支持从视频下载到Markdown书籍生成的全流程自动化处理,效率比人工整理提升10倍以上。应用场景涵盖教育、研究、内容创作和企业培训等多个领域,能够将专业讲座快速转化为大众可理解的知识产品,推动知识民主化。系统部署基于Ollama模型服务和whisper等开源工具,提原创 2025-06-14 19:59:57 · 1261 阅读 · 0 评论 -
使用Screenshot-to-Code+Ollama:将图片秒变网页的神奇工具
摘要:Screenshot-to-Code是一款将设计图自动转换为HTML代码的工具,结合Ollama本地AI模型实现隐私保护。部署需高性能硬件(如RTX 3090显卡),通过Docker容器化安装,包含后端Python服务和前端Node.js界面。测试了多种视觉模型(如qwen2.5vl、gemma3等)的转换效果,通过创建模型别名兼容原项目API调用方式。该方案有效解决了设计到开发的代码转换瓶颈,支持本地化运行避免云API费用。完整部署流程包括Ollama服务搭建、环境配置和前后端联动。原创 2025-06-14 11:12:06 · 644 阅读 · 0 评论 -
ROS2双目相机标定与测距全流程详解:从原理到实践
本文详细介绍了基于ROS2的双目相机标定与三维测距全流程。首先解释了双目视觉测距原理,强调相机标定对消除畸变、确定相机位置关系的重要性。接着分步骤指导硬件选购、ROS2环境搭建(推荐全局快门相机和棋盘格标定板),并提供图像采集与分割的代码实现(包括参数配置、节点开发和图像处理)。通过这套方法,可实现毫米级精度的三维测距,为机器人导航等应用奠定基础。整个流程从原理到实践,兼顾技术深度与操作指导性。原创 2025-06-12 22:44:16 · 1314 阅读 · 0 评论 -
在RK3588上部署ROS2与ORB-SLAM3实现Gazebo小车自主导航-环境搭建过程
文章摘要(149字) 本项目在RK3588开发板部署ROS2 Humble环境,集成ORB-SLAM3算法实现Gazebo仿真小车的自主导航。通过Docker容器创建隔离开发环境,安装ROS2基础组件及视觉处理工具包。测试环境包含圆柱体点云生成和可视化功能,验证ROS2节点通信。关键技术组合:RK3588提供算力支持,ROS2实现系统集成,ORB-SLAM3完成视觉定位,Gazebo进行算法验证。该方法为机器人SLAM开发提供标准化流程,兼顾仿真测试与实际部署需求。原创 2025-06-11 22:50:12 · 1305 阅读 · 0 评论 -
测试MonSter(双目)、DepthPro(单目) 生成深度图
本文介绍了两种深度图生成方法:双目视觉的MonSter和单目视觉的DepthPro。深度图作为计算机视觉核心技术,在自动驾驶、AR/VR等领域有重要应用。文章详细提供了Docker环境配置步骤、数据集准备方法以及OpenCV双目深度计算的具体实现,包括视差图优化和深度图后处理技术。通过优化算法参数和引入中值滤波、双边滤波等技术,提升了深度图的精度和视觉效果,为低成本获取3D环境信息提供了可行方案。原创 2025-06-10 13:52:13 · 930 阅读 · 0 评论 -
移植driver_monitoring_system里的MobileNet到RK3588
移植driver_monitoring_system里的MobileNet到RK3588原创 2025-06-07 15:49:14 · 389 阅读 · 0 评论 -
RK3588 InsightFace人脸识别移植及精度测试全解析
本文详细介绍了如何在RK3588平台上移植InsightFace人脸识别模型并进行精度验证。通过PyTorch转ONNX、ONNX转RKNN量化模型的关键步骤,实现了INT8量化模型的部署。测试数据显示,该模型在LFW数据集上达到99.43%的准确率(接近官方99.52%),推理时间仅14.23ms。ROC曲线和相似度分布图表明模型区分能力优秀,AUC超过0.99,满足实际应用需求。文中还详解了量化原理、环境搭建和测试方法,为边缘设备部署人脸识别提供了完整解决方案。原创 2025-06-05 20:43:40 · 1315 阅读 · 1 评论 -
YOLOv8n行人检测实战:从数据集准备到模型训练
本文详细介绍了使用YOLOv8n进行行人检测的完整流程。首先阐述了YOLOv8的优势:高速推理(300+FPS)、更高精度、易用性和轻量化(仅6MB)。接着通过Docker搭建GPU训练环境,配置32GB共享内存避免数据加载问题,并安装必要的框架和OpenCV组件。数据集采用COCO2017标注格式,包含归一化坐标的YOLO标签文件。通过可视化脚本验证标注准确性后,提出多数据集融合训练策略以增强模型泛化能力。最后使用Ultralytics框架启动训练,展现了从环境搭建到模型训练的完整技术路径。该方案兼顾检测原创 2025-06-05 14:44:56 · 772 阅读 · 0 评论 -
在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南
在RK3588上搭建ROS1环境与数据可视化开发指南 本文详细介绍了如何在RK3588开发板上搭建ROS1(Noetic)开发环境并实现多模态数据可视化。主要内容包括: 采用Docker容器化方案搭建ROS环境,确保环境隔离和可移植性 配置GUI显示功能,验证X11转发正常工作 安装ROS Noetic完整桌面版及必要开发工具 创建模拟场景节点,实现小球绕圆柱运动的动态模拟 开发多模态数据可视化功能,包括点云生成、标记创建和顶视图图像渲染 使用RVIZ进行实时数据展示和验证 这套方案不仅适用于RK3588平原创 2025-06-04 21:32:07 · 1348 阅读 · 0 评论 -
基于PyQt5的相机手动标定工具:原理、实现与应用
基于PyQt5的相机标定工具实现 摘要:本文介绍了一个基于PyQt5开发的交互式相机标定工具,主要用于解决多相机系统图像拼接时的透视对齐问题。工具采用直观的图形界面设计,支持通过手动调整图像角点实现透视变换,包含以下核心功能:(1) 图像加载与统一尺寸预处理;(2) 交互式角点拖动与整体移动;(3) 实时透视变换效果预览;(4) 图像拼接与结果保存。该工具利用Qt的QTransform类实现透视变换矩阵计算,并通过OpenCV完成最终拼接,适用于监控系统、全景拼接、AR/VR等多个应用场景,具有操作直观、反原创 2025-06-03 22:13:20 · 1368 阅读 · 0 评论