魔法甜点之和:小包的新挑战
问题描述
小R不再追求甜点中最高的喜爱值,今天他想要的是甜点喜爱值之和正好匹配他的预期值 S。为了达到这个目标,他可以使用魔法棒来改变甜点的喜爱值,使其变为原来喜爱值的阶乘。每个甜点只能使用一次魔法棒,也可以完全不用。
下午茶小哥今天带来了 N 个甜点,每个甜点都有一个固定的喜爱值。小R有 M 个魔法棒,他可以选择任意甜点使用,但每个甜点只能使用一次魔法棒。他的目标是通过选择一些甜点,可能使用魔法棒,使得这些甜点的喜爱值之和恰好为 S。
请计算小R有多少种不同的方案满足他的要求。如果两种方案中,选择的甜点不同,或者使用魔法棒的甜点不同,则视为不同的方案。
测试样例
样例1:
输入:
n = 3, m = 2, s = 6, like = [1, 2, 3]
输出:5
样例2:
输入:
n = 3, m = 1, s = 1, like = [1, 1, 1]
输出:6
样例3:
输入:
n = 5, m = 3, s = 24, like = [1, 2, 3, 4, 5]
输出:1
样例4:
输入:
n = 4, m = 0, s = 10, like = [1, 3, 3, 3]
输出:1
样例5:
输入:
n = 6, m = 1, s = 35, like = [5, 5, 5, 5, 5, 5]
输出:0
from collections import defaultdict
# 计算阶乘的魔法数组
magic = [1] * 100
def pre():
for i in range(1, 100):
magic[i] = magic[i - 1] * i
def solution(n, m, s, like):
pre()
f = defaultdict(int) # 使用defaultdict来初始化map
f[(0, 0)] = 1 # 初始状态
for i in range(1, n + 1):
g = f.copy() # 备份当前的状态
for (a, b), v in g.items():
if b + like[i - 1] <= s: # 加入"喜欢"的数量
f[(a, b + like[i - 1])] += v
if a + 1 <= m and b + magic[like[i - 1]] <= s: # 加入"喜欢的阶乘"
f[(a + 1, b + magic[like[i - 1]])] += v
sum_ = 0
for i in range(m + 1):
sum_ += f[(i, s)] # 累加满足条件的结果
return sum_
if __name__ == "__main__":
# You can add more test cases here
print(solution(3, 2, 6, [1,2,3]) == 5 )
print(solution(3, 1, 1, [1,1,1]) == 6 )