稀土掘金——AI刷题(11.1-11.30 第八天打卡)

魔法甜点之和:小包的新挑战

问题描述

小R不再追求甜点中最高的喜爱值,今天他想要的是甜点喜爱值之和正好匹配他的预期值 S。为了达到这个目标,他可以使用魔法棒来改变甜点的喜爱值,使其变为原来喜爱值的阶乘。每个甜点只能使用一次魔法棒,也可以完全不用。

下午茶小哥今天带来了 N 个甜点,每个甜点都有一个固定的喜爱值。小R有 M 个魔法棒,他可以选择任意甜点使用,但每个甜点只能使用一次魔法棒。他的目标是通过选择一些甜点,可能使用魔法棒,使得这些甜点的喜爱值之和恰好为 S。

请计算小R有多少种不同的方案满足他的要求。如果两种方案中,选择的甜点不同,或者使用魔法棒的甜点不同,则视为不同的方案。


测试样例

样例1:

输入:n = 3, m = 2, s = 6, like = [1, 2, 3]
输出:5

样例2:

输入:n = 3, m = 1, s = 1, like = [1, 1, 1]
输出:6

样例3:

输入:n = 5, m = 3, s = 24, like = [1, 2, 3, 4, 5]
输出:1

样例4:

输入:n = 4, m = 0, s = 10, like = [1, 3, 3, 3]
输出:1

样例5:

输入:n = 6, m = 1, s = 35, like = [5, 5, 5, 5, 5, 5]
输出:0

from collections import defaultdict

# 计算阶乘的魔法数组
magic = [1] * 100

def pre():
    for i in range(1, 100):
        magic[i] = magic[i - 1] * i

def solution(n, m, s, like):
    pre()
    f = defaultdict(int)  # 使用defaultdict来初始化map
    f[(0, 0)] = 1  # 初始状态

    for i in range(1, n + 1):
        g = f.copy()  # 备份当前的状态
        for (a, b), v in g.items():
            if b + like[i - 1] <= s:  # 加入"喜欢"的数量
                f[(a, b + like[i - 1])] += v
            if a + 1 <= m and b + magic[like[i - 1]] <= s:  # 加入"喜欢的阶乘"
                f[(a + 1, b + magic[like[i - 1]])] += v

    sum_ = 0
    for i in range(m + 1):
        sum_ += f[(i, s)]  # 累加满足条件的结果
    
    return sum_

if __name__ == "__main__":
    #  You can add more test cases here
    print(solution(3, 2, 6, [1,2,3]) == 5 )
    print(solution(3, 1, 1, [1,1,1]) == 6 )

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值