集成学习-回归问题-sklearn树模型参数学习

本文深入探讨了sklearn库中决策回归树的参数,包括criterion(如MSE)、splitter策略、max_depth、min_samples_split、min_samples_leaf等,解释了这些参数如何影响模型构建和性能。同时提到了与决策分类树的区别,如criterion在分类树中使用基尼不纯度或熵。

sklearn.tree包括决策分类树和决策回归树,决策回归树涉及参数:klearn.tree.DecisionTreeRegressor(, criterion=‘mse’, splitter=‘best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, ccp_alpha=0.0),
criterion:用于特征选择,可以取{“mse”, “friedman_mse”, “mae”, “poisson”}, 默认为MSE使用均方误差来最小化损失;
splitter:控制随机分支策略,可取{“best”, “random”}, 默认best在随机分支中优先选择最重要的特征进行分支;
max_depth控制树的深度;
min_samples_split:限制分支所包含的最小训练样本数;
min_samples_leaf:限制分支后子节点必须包含最小训练样本。一般搭配max_depth使用,可以使模型更加平滑;
min_weight_fraction_leaf:限制叶子节点样本权重和的最小值,小于该值就会和兄弟节点一起被剪掉;
max_features:限制分支时考虑特征数,用于高纬度数据的预防过拟合的剪枝策略;
random_state:用于控制树的随机性,为int则为random_state的随机数生成器种子,为RandomState则为随机数生成器,为None则为随机数生成器使用np.random的RandomState实例;
max_leaf_nodes:用于基于权重的剪枝控制参数;
min_impurity_decrease:从信息增益角度限制分支,信息增益低于该值就不进行分支;
min_impurity_split:与min_impurity_decrease一样,不同版本可能用不同的参数基于信息增益控制分支;<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值