TOPSIS法(熵权法)(模型+MATLAB代码)

本文介绍了TOPSIS法的基本原理及其应用步骤。包括指标正向化、矩阵标准化、计算得分与归一化等关键环节,并探讨了权重确定的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TOPSIS可翻译为逼近理想解排序法,国内简称为优劣解距离法

TOPSIS法是一种常用的综合评价方法其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的距离

一、模型介绍

极大型指标(效益型指标) :越高(大)越好

极小型指标(成本型指标) :越少(小)越好

中间型指标:越接近某个值越好

区间型指标:落在某个区间最好

构造计算评分的公式:(x-min)/(max-min)【只有一个指标】

第一步:将原始矩阵正向化

统一指标类型:将所有指标转化为极大型称为指标正向化(最常用 可加到论文中)

极小型指标转化为极大型指标的公式:max-x

function [posit_x] = Min2Max(x)
posit_x = max(x) - x;
%posit_x = 1 ./ x; %如果x全部都大于0,也可以这样正向化
end

中间型指标转化为极大型指标:

function [posit_x] = Mid2Max(x,best)
M = max(abs(x-best));
posit_x = 1 - abs(x-best) / M;
end

区间型指标转化为极大型指标 :

function [posit_x] = Inter2Max(x,a,b)
r_x = size(x,1); % row of x
M = max([a-min(x),max(x)-b]);
posit_x = zeros(r_x,1); %zeros函数用法: zeros(3) zeros(3,1) ones(3)
% 初始化posit_x全为0 初始化的目的是节省处理时间
for i = 1: r_x
if x(i) < a posit_x(i) = 1-(a-x(i))/M; elseif x(i) > b
posit_x(i) = 1-(x(i)-b)/M;
else
posit_x(i) = 1;
end
end
end

第一步代码:

[n,m] = size(X);
disp(['共有' num2str(n) '个评价对象, ' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: ']);

if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指标类型(1:极小型, 2:中间型, 3:区间型) ')
Type = input('例如:第2列是极小型,第3列是区间型,第6列是中间型,就输入[1,3,2]: '); %[2,1,3]
% 注意,Position和Type是两个同维度的行向量
for i = 1 : size(Position,2) %这里需要对这些列分别处理,因此我们需要知道一共要处理的次数,即循环的次数
X(:,Position(i)) = Positivization(X(:,Position(i)),Type(i),Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接收三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i)) 回顾上一讲的知识,X(:,n)表示取第n列的全部元素
% 第二个参数是对应的这一列的指标类型(1:极小型, 2:中间型, 3:区间型)
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end

第二步:正向化矩阵标准化

标准化处理:为了消去不同指标量纲的影响,需要对已经正向化的矩阵进行标准化处理

第二步代码:

Z = X ./ repmat(sum(X.*X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)

第三步:计算得分并归一化

多个指标:z与最小值的矩阵/z与最大值的距离+z与最小值的距离

第三步代码:

D_P = sum([(Z - repmat(max(Z),n,1)) .^ 2 ],2) .^ 0.5; % D+ 与最大值的距离向量
D_N = sum([(Z - repmat(min(Z),n,1)) .^ 2 ],2) .^ 0.5; % D- 与最小值的距离向量
S = D_N ./ (D_P+D_N); % 未归一化的得分
disp('最后的得分为:')
stand_S = S / sum(S)
[sorted_S,index] = sort(stand_S ,'descend')

带权重的TOPSIS:使用层次分析法给这m个评价指标确定权重

当然:层次分析法的主观性太强了,更推荐大家使用熵权法来进行客观赋值

熵权法是一种客观赋权方法

依据的原理:指标的变异程度(可以理解为方差)越小,所反映的信息量也越少,其对应的权值也应该越低。(客观=数据本身就可以告诉我们权重)

如何度量信息量的大小:

越有可能发生的事情,信息量越小,越不可能发生的事情,信息量就越多。用概率在衡量(用对数函数来拟合)

信息熵(本质:对信息量的期望值):

信息熵越大对应的信息量越小

熵权法的计算步骤:

(1)判断输入的矩阵中是否存在负数,如果有则要重新标准化到非负区间

(2)计算第j项指标下第i个样本所占的比重,并将其看作相对熵计算中用到的概率

(3)计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权

信息效用值的定义:dj=1-ej 信息效用值越大,其对应的信息就越多

将信息效用值进行归一化,就可以得到每个指标的熵权:

分享:

“小朋友负责吃好喝好不烦恼”

### 回答1: 熵权法是一种常用的多指标权重确定方,下面是使用MATLAB实现熵权法代码: ``` function [weights] = entropy_weight(data) % 熵权法求指标权重 % data为n*m矩阵,n表示样本数量,m表示指标数量 % weights为指标权重 % 计算每个指标的熵值 [n,m] = size(data); p = data./repmat(sum(data,1),n,1); % 计算每个指标占比 E = -sum(p.*log(p))/log(n); % 计算每个指标的权重 weights = (1-E)/sum(1-E); end ``` 使用方: 假设我们有5个指标,每个指标有10个样本数据,数据存储在名为`data`的矩阵中,使用以下代码即可计算出每个指标的权重: ``` weights = entropy_weight(data); ``` 其中,`weights`为一个长度为5的向量,表示每个指标的权重。 ### 回答2: 熵权法是一种用于多属性决策的方,通过计算每个属性的熵值和权重,来确定各个属性对最终决策的贡献程度。下面是一个简单的熵权法MATLAB代码示例: ```matlab % 输入数据 data = [4 7 5 9; 6 4 8 7; 8 5 4 6; 5 6 7 4; 7 8 6 5]; % 数据归一化 [n, ~] = size(data); for i = 1:n data(i, :) = data(i, :) ./ sum(data(i, :)); end % 计算熵值 entropy = -sum(data .* log(data), 2); % 计算权重 weight = (1 - entropy) / sum(1 - entropy); % 输出结果 disp("属性权重:"); disp(weight); ``` 代码中的`data`矩阵表示各属性的数据,每一行为一个样本,每一列为一个属性。首先,我们对数据进行归一化处理,即将每个样本的属性值除以该样本属性值之和。然后,通过计算每个样本行的熵值,来确定各属性的信息量大小。最后,将熵值转化为权重,权重越大表示该属性对最终决策的贡献越大。 以上是一个简单的熵权法MATLAB代码示例,可以通过修改`data`矩阵中的数据来适应不同的问题。因为代码只是一个简单示例,并没有对异常情况进行处理,所以在实际使用时需要根据具体情况添加错误处理和异常情况判断。 ### 回答3: 熵权法是一种多属性决策方,常用于评价指标的权重确定。其基本思想是通过计算指标之间的熵值和权重来确定各指标的重要性。 以下是一个简单的熵权法MATLAB代码示例: ```matlab % 输入数据 data = [2 3 4; 1 5 6; 7 8 9]; % 原始数据矩阵,行表示不同的指标,列表示不同的样本 % 归一化处理 maxVals = max(data,[],2); % 每个指标的最大值 minVals = min(data,[],2); % 每个指标的最小值 normalizedData = (data - minVals) ./ (maxVals - minVals); % 归一化后的数据 % 计算信息熵 [nRows, nCols] = size(normalizedData); entropy = zeros(nRows, 1); % 存储每个指标的熵值 for i = 1:nRows p = normalizedData(i,:); % 当前指标的样本值 p = p ./ sum(p); % 归一化处理 entropy(i) = -sum(p .* log(p)); % 计算熵值 end % 计算权重 weights = (1 - entropy) / sum(1 - entropy); % 输出结果 disp("各指标的权重为:"); disp(weights'); ``` 这段代码首先对输入的数据进行归一化处理,然后计算每个指标的信息熵,最后根据公式计算得到各指标的权重。最后输出结果。 注意:这只是一个简单的熵权法实现示例,实际应用中可能需要根据具体情况对代码进行修改和调整。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值