1. 背景介绍
近年来,随着深度学习技术的迅猛发展,大型语言模型(Large Language Models,LLMs)在自然语言处理领域取得了突破性进展。LLMs 拥有强大的语言理解和生成能力,能够在机器翻译、文本摘要、对话生成等任务中展现出惊人的性能。然而,LLMs 的应用开发并非易事,需要克服模型规模庞大、计算资源消耗高、应用场景多样化等挑战。
为了降低 LLMs 的应用门槛,促进其在各个领域的应用落地,AI 大型语言模型应用开发框架应运而生。这些框架提供了一套标准化的接口和工具,帮助开发者快速构建基于 LLMs 的应用程序,并有效管理模型训练、部署和推理过程。
1.1 大型语言模型的兴起
大型语言模型的兴起可以追溯到 2017 年 Transformer 模型的提出。Transformer 模型采用自注意力机制,能够有效地捕捉长距离依赖关系,并在机器翻译任务中取得了显著的性能提升。随后,基于 Transformer 的预训练语言模型(Pre-trained Language Models,PLMs)如 BERT、GPT 等相继涌现,并在各种自然语言处理任务中展现出强大的能力。
1.2 LLMs 应用开发的挑战
尽管 LLMs 性能强大,但其应用开发面临着以下挑战:
- 模型规模庞大: LLMs 通常拥有数亿甚至数十亿的参数,需要大量的计算资源和存储空间进行训练和推理。
- 计算资源消耗高: LLMs 的训练和推理过程需要消耗大量的计算资源,这对于