从零开始大模型开发与微调:链式求导法则

从零开始大模型开发与微调:链式求导法则

关键词:大模型,开发,微调,链式求导,深度学习,神经网络

1. 背景介绍

1.1 问题的由来

随着深度学习技术的飞速发展,大模型(Large Language Models,LLMs)逐渐成为自然语言处理(NLP)领域的研究热点。大模型能够对海量数据进行训练,学习到丰富的语言知识和表达方式,从而在文本生成、机器翻译、问答系统等任务上展现出惊人的性能。然而,大模型的开发与微调过程复杂,需要深入理解其背后的原理和技术细节。本文将从零开始,详细介绍大模型的开发与微调过程,重点关注链式求导法则在其中的应用。

1.2 研究现状

近年来,大模型的研究取得了显著进展,代表性的模型包括BERT、GPT、T5等。这些模型通过预训练和微调两个阶段,实现了在多个NLP任务上的优异表现。其中,链式求导法则在模型训练过程中发挥着至关重要的作用。

1.3 研究意义

深入理解大模型的开发与微调过程,有助于研究者更好地设计模型结构、优化训练策略,并最终推动大模型技术的应用落地。本文旨在从零开始,系统地介绍大模型的开发与微调过程,帮助读者掌握链式求导法则在其中的应用,为后续的研究和开发提供参考。

1.4 本文结构

本文将分为以下几个部分:

  • 第2部分:介绍大模型的定义、类型和特点。
  • 第3部分:介绍神
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI架构师小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值