从零开始大模型开发与微调:链式求导法则
关键词:大模型,开发,微调,链式求导,深度学习,神经网络
1. 背景介绍
1.1 问题的由来
随着深度学习技术的飞速发展,大模型(Large Language Models,LLMs)逐渐成为自然语言处理(NLP)领域的研究热点。大模型能够对海量数据进行训练,学习到丰富的语言知识和表达方式,从而在文本生成、机器翻译、问答系统等任务上展现出惊人的性能。然而,大模型的开发与微调过程复杂,需要深入理解其背后的原理和技术细节。本文将从零开始,详细介绍大模型的开发与微调过程,重点关注链式求导法则在其中的应用。
1.2 研究现状
近年来,大模型的研究取得了显著进展,代表性的模型包括BERT、GPT、T5等。这些模型通过预训练和微调两个阶段,实现了在多个NLP任务上的优异表现。其中,链式求导法则在模型训练过程中发挥着至关重要的作用。
1.3 研究意义
深入理解大模型的开发与微调过程,有助于研究者更好地设计模型结构、优化训练策略,并最终推动大模型技术的应用落地。本文旨在从零开始,系统地介绍大模型的开发与微调过程,帮助读者掌握链式求导法则在其中的应用,为后续的研究和开发提供参考。
1.4 本文结构
本文将分为以下几个部分:
- 第2部分:介绍大模型的定义、类型和特点。
- 第3部分:介绍神