树与图的深度优先遍历(树的重心)

这篇博客介绍了一个用于求解最小割问题的高效算法,通过深度优先搜索策略,遍历图中节点并计算每个节点删除后的连通块大小,从而找到使连通块大小最小的点,实现最小割。代码展示了C++实现的详细过程,包括邻接表的构建和DFS遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

样例: 

      

 

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N * 2;

int n;
int h[N], e[M], ne[M], idx;
int ans = N; 
bool st[N];  //bool数组存遍历过的点

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

//返回以u为根的子树中点的数量
int dfs(int u)
{
    st[u] = true;     //标记当前的点u已经被搜过
    int sum = 1, res = 0;   //sum当前点的数量,res存将这个点删除后,剩余各个连通块中点数的最大值
    for (int i = h[u]; i != -1; i = ne[i])  //遍历u的所有初边
    {
        int j = e[i];   //j存当前链表里的节点对应的图里面的点的编号
        if (!st[j])
        {
            int s=dfs(j);  //s表示当前子树的大小
            res=max(res,s);
            sum+=s;
        }
    }

    res = max(res, n - sum );  //该节点的父节点的连通块的大小
    ans = min(ans, res);

    return sum;
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);   //读入边
    }

    dfs(1);

    printf("%d\n", ans);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值