【python 机器学习】sklearn ROC曲线与AUC指标


sklearn ROC曲线与AUC指标

在机器学习中,评估分类模型的性能不仅仅依赖于准确率,还需要使用一些更全面的指标。尤其在处理二分类问题时,ROC曲线AUC指标是非常常见且重要的评估工具。这些工具能够帮助我们更直观地理解模型在不同分类阈值下的表现,尤其是在样本不均衡的情况下,能够提供比准确率更有意义的评估。

1. 什么是ROC曲线与AUC?

通俗介绍:
  • ROC曲线:就像是在跑步比赛中看不同运动员在不同阶段的表现。你可以看到在每一个时刻,模型在判断对还是错时的表现。
  • AUC(曲线下面积):ROC曲线下方的面积,越大越好。它告诉我们模型整体表现有多好,AUC越接近1,模型就越优秀。
学术解释:
  • ROC曲线(Receiver Operating Characteristic Curve):是一种二分类问题中用于评估分类器性能的工具。ROC曲线绘制了分类器的**真正率(True Positive Rate, TPR)假正率(False Positive Rate, FPR)**之间的关系。TPR也称为召回率,而FPR是指在实际为负类的样本中,错误地被预测为正类的比例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人才程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值