深度学习模型部署框架之ONNX Runtime


0 前言

本文是深度学习模型部署框架的第一篇,更多部署框架可以查看本专栏的其他文章。

1 简介

概念:onnx一种开源模型格式,专注于推理所需的能力。同时,它还是一个中间深度学习框架,用于连接不同深度学习框架之间的转换。
优势:跨平台兼容性好;性能优化;支持多种框架。
坑点:onnx只是一个格式,就和json一样,只要满足规则,就是合法的。因此单纯从pytorch转成onnx格式很简单,但是不同后端框架接受的onnx是不一样的。比如pytorch自带的torch.onnx.export转换得到的onnx,onnxruntime 需要的onnx,TensorRT需要的onnx都是不同的,因此这才是坑的来源。

2 模型准备

2.1 导出模型为onnx格式

  • 使用模型转换工具,torch.onnx.export和tf2onnx
# pt->onnx
# 示例数据
dummy_input = torch.randn(1,1, 16000*5)  # 只有第三个维度可能会变化,前两个都不会变
# 导出模型为 ONNX 格式
torch.onnx.export(
    model,                   # PyTorch 模型
    dummy_input,             # 示例输入
    "denoiser_model_12_3_3_dongtai_5s.onnx",  # ONNX 文件的保存路径
    input_names=['input'],   # 输入层的名字
    output_names=['output'], # 输出层的名字
    dynamic_axes={
   
   
        'input': {
   
   2: 'audio_length'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值