文章目录
0 前言
本文是深度学习模型部署框架的第一篇,更多部署框架可以查看本专栏的其他文章。
1 简介
概念:onnx一种开源模型格式,专注于推理所需的能力。同时,它还是一个中间深度学习框架,用于连接不同深度学习框架之间的转换。
优势:跨平台兼容性好;性能优化;支持多种框架。
坑点:onnx只是一个格式,就和json一样,只要满足规则,就是合法的。因此单纯从pytorch转成onnx格式很简单,但是不同后端框架接受的onnx是不一样的。比如pytorch自带的torch.onnx.export转换得到的onnx,onnxruntime 需要的onnx,TensorRT需要的onnx都是不同的,因此这才是坑的来源。
2 模型准备
2.1 导出模型为onnx格式
- 使用模型转换工具,torch.onnx.export和tf2onnx
# pt->onnx
# 示例数据
dummy_input = torch.randn(1,1, 16000*5) # 只有第三个维度可能会变化,前两个都不会变
# 导出模型为 ONNX 格式
torch.onnx.export(
model, # PyTorch 模型
dummy_input, # 示例输入
"denoiser_model_12_3_3_dongtai_5s.onnx", # ONNX 文件的保存路径
input_names=['input'], # 输入层的名字
output_names=['output'], # 输出层的名字
dynamic_axes={
'input': {
2: 'audio_length'