962. 最大宽度坡(单调栈)

给定一个整数数组,找到其中最大宽度的坡,即找到一对下标i和j(i<j),使得A[i]≤A[j],同时宽度j-i最大。使用栈来存储数组中的最小值索引,然后从数组尾部开始遍历,找到每个位置的最小值对应的坡宽度,更新最大宽度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个整数数组 A是元组 (i, j),其中  i < j 且 A[i] <= A[j]。这样的坡的宽度为 j - i

找出 A 中的坡的最大宽度,如果不存在,返回 0 。

示例 1:

输入:[6,0,8,2,1,5]
输出:4
解释:
最大宽度的坡为 (i, j) = (1, 5): A[1] = 0 且 A[5] = 5.

示例 2:

输入:[9,8,1,0,1,9,4,0,4,1]
输出:7
解释:
最大宽度的坡为 (i, j) = (2, 9): A[2] = 1 且 A[9] = 1.

提示:

  1. 2 <= A.length <= 50000
  2. 0 <= A[i] <= 50000

 

class Solution {

public:

    int maxWidthRamp(vector<int>& nums) {

        int ans=0;

        int n=nums.size();

        stack<int>stk;

        for(int i=0;i<n;i++)

        {

            if(stk.empty()||nums[stk.top()]>nums[i])stk.push(i);

        }

        for(int i=n-1;i>=ans;i--)

        {

            while(stk.size()&&nums[stk.top()]<=nums[i])

            {

                int p=stk.top();

                stk.pop();

                ans=max(ans,i-p);

            }

        }

        return ans;

    }

};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值