自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(186)
  • 问答 (1)
  • 收藏
  • 关注

原创 解决Visio箭头总是自动吸附到连接点,不能随意摆放问题

在我们用Visio画图时,其自带的自动对齐、自动连接、自动吸附功能确实能带了很多便利。但在画连接线时,Visio总是自动连接箭头与图形的固定节点,想要微调一下连接位置,却很麻烦,显得很不方便,需要关闭自动连接功能。选择菜单栏中的视图,点击视觉帮助的右下角小箭头,在打开的设置对话框中,取消对齐和粘附前的勾即可。

2025-04-09 15:23:51 2557

原创 Word中把参考文献引用改为上标

1. 在Word中,当我们交叉引用来引用文献时,文献的引用默认和字体是一样大的。然后依次点击:格式、字体、上标。然后点击上标前的框后点击确定,再点击全部替换。然后依次点击:格式、字体、上标。然后点击上标前的框后点击确定,再点击全部替换。然后依次点击:格式、字体、上标。然后点击上标前的框后点击确定,再点击全部替换。

2025-03-13 21:12:38 3264

原创 三线表制作

3. 名称自己设置(如:三线表)。将格式应用于整个表格。在左下角的格式中设置 “4. 然后我们再选择将格式应用于标题行。在左下角的格式中设置 “5. 后面左下角格式里面的字体和段落,根据自己的要求自己调,1. 创建表格,比如一个五行四列的表格。2. 选中创建好的表格,点击 “榜,再点击上底纹和下底纹。

2025-01-10 16:49:21 454 2

原创 【YOLO学习】YOLOv10配置

3. 一般先安装 torch 和 torchvision,把 txt 文档中的前两行用。,在上面的帮助文档中复制相关代码粘贴上去。5. 激活虚拟环境,运行如下代码。不过这种速度会很慢,一般用国内镜像源。之后再运行上面的两条。

2024-11-07 00:36:40 1131

原创 【YOLO学习】YOLOv8改进举例

需要在训练的文件里把 model 那里改为对应的 yaml 文件。

2024-11-01 15:38:45 940

原创 【YOLO学习】YOLOv5详解

2. SPPF 结构是将输入串行通过多个 5x5 大小的 MaxPool 层,这里需要注意的是串行两个 5x5 大小的 MaxPool 层是和一个 9x9 大小的 MaxPool 层计算结果是一样的,串行三个 5x5 大小的 MaxPool 层是和一个 13x13 大小的 MaxPool 层计算结果是一样的。1. Focus 结构类似于 YOLOv2中的 passthrough,是一种用于特征提取的卷积神经网络层,用于将输入特征图中的信息进行压缩和组合,从而提取出更高层次的特征表示。

2024-10-18 20:08:19 13996

原创 用YOLOv5跑口罩佩戴识别时的一些问题解决

2. 原因:在 numpy 的较新版本中,np.int 已经被废弃,因为它仅仅是对 Python 内置的 int 类型的一个别名。2. 原因:在过去对当前数据集进行过训练,导致在数据集文件夹中生成了 .cache 的缓存文件。3. 解决:将代码中的 np.int 替换为 Python 的内置 int 类型。3. 解决办法:找到数据集文件夹中的全部 .cache 文件,并将他们全部删除。2. 原因:版本不兼容。

2024-10-11 20:20:12 555

原创 【YOLO学习】YOLOv4详解

3. DIOU(Distance IOU)损失:DIOU 考虑到 GIOU 的缺点,也是增加了 C 检测框,将真实框和预测框都包含了进来,但是 DIOU 计算的不是框之间的交并,而是计算的每个检测框之间的欧氏距离,这样就可以解决 GIOU 包含出现的问题。concat:将两个特征图在通道数方向叠加在一起,原特征图信息完全保留下来,再对原特征图增加一些我们认为是较好的特征图,丰富了特征图的多样性,是在空间上对原特征图的增强,这样在下一次卷积的过程中我们能得到更好的特征图。

2024-10-09 20:41:04 2789

原创 Anaconda关于更换国内源、创建python环境常用指令

但这样删除环境不是很彻底,还会有文件无法删除,导致这个文件夹还在,所以我们到安装 Anaconda 的文件夹下找到 envs 文件夹,然后删除 myenv 这个文件夹。删除某个环境时,一定不能在该环境下删除,一般都是在 base 环境(anaconda默认的环境)下删除我们创建过的环境。在菜单栏中打开 Anaconda Prompt,它是一个命令行界面。

2024-10-06 23:57:07 2234

原创 【YOLO学习】YOLOv3详解

1. 与 YOLOv2 不同的是,YOLOv3 在 Darknet-19 里加入了 ResNet 残差连接,改进之后的模型叫 Darknet-53。在 ImageNet上 实验发现 Darknet-53 相对于 ResNet-152 和 ResNet101,不仅在分类精度上差不多,计算速度还比 ResNet-152 和 ResNet-101 快多了,网络层数也比它们少。2. YOLOv3 在三个不同的尺度上对框进行预测。使用类似于特征金字塔网络的概念从这些尺度上提取特征。

2024-10-06 20:45:31 1075

原创 【YOLO学习】YOLOv5口罩检测实战

4. 打开具体的标注文件,你将会看到下面的内容,txt 文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别 id,归一化处理之后的中心点 x 坐标、y 坐标、目标框的 w 和 h。的第 60 行,修改成你的模型地址即可,如果你有 GPU 的话,可以将 device 设置为 0,表示使用第 0 行 GPU,这样可以加快模型的识别速度。文件中,是通过 pyqt5 完成的界面设计,在启动界面前,你需要将模型替换成你训练好的模型,替换的位置在。标记完成的数据请按照下面的格式进行放置,方便程序进行索引。

2024-10-05 13:17:33 1430 2

原创 【YOLO学习】YOLOv2详解

YOLOv1 虽然检测速度快,但在定位方面不够准确,并且召回率较低。为了提升定位准确度,改善召回率,YOLOv2 在 YOLOv1 的基础上提出了几种改进策略,如下图所示,一些改进方法能有效提高模型的 mAP。

2024-10-03 02:46:21 2616

原创 【YOLO学习】YOLOv1详解

1. YOLO 的全称是 You Only Look Once: Unified, Real-Time Object Detection。YOLOv1 的核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box 的位置和 bounding box 所属的类别。简单来说,只看一次就知道图中物体的类别和位置。2. 将一幅图像分成 SxS 个网格(grid cell),如果某个 object 的中心落在这个网格中,则这个网格就负责预测这个 object。

2024-09-25 00:32:42 2990 2

原创 人工智能前沿技术

2. 设计轻量级神经网络模型主要有4个方向:(1) 人工设计:使用高效的卷积方式,如深度可分离卷积、组卷积。(2) 模型压缩:常用的有剪枝、量化、知识蒸馏。(3) 神经架构搜索:使用搜索策略来探索空间,以找到在特定任务上表现最优的网络架构。(4) 基于大型语言模型(LLM)的方法:如可以将注意力机制、Transformer结构等应用于轻量级视觉模型的设计中。(1) 深度神经网络;(2) 深度强化学习;(3) 大型语言模型(LLM);(4) 自监督学习;(6) 人工智能生成内容(AIGC)

2024-09-12 10:53:46 266

原创 数据结构(5)

2. 折半查找的基本思想:(1) 首先将给定Key与表中的中间位置的元素比较,若相等,则查找成功,返回该元素的存储位置。(2) 若不等,则所需查找的元素只能在中间元素以外的前半部分或后半部分,然后在缩小的范围内继续进行同样的查找。块内的元素可以无序,但块间的元素是有序的,即第一块中的最大关键字小于第二个块中的所有记录的关键字,第二块中的最大关键字小于第三个块中的所有记录的关键字,依次类推。但每次查找的取整方式必须相同。2. 顺序查找通常分为对一般的无序线性表的顺序查找和对按关键字有序的线性表的顺序查找。

2024-09-03 00:02:11 535

原创 深度学习(11)---Swin Transformer详解

(2) Swin-Transformer使用窗口多头自注意力,将特征图划成多个不相交的区域,然后在每个窗口里进行自注意力计算,只要窗口大小固定,自注意力的计算复杂度也是固定的,那么总的计算复杂度就是图像尺寸的线性倍数,而不是Vit对整个特征图进行全局自注意力计算,这样就减少了计算量,但是也隔绝了不同窗口之间的信息交流,随之作者提出后文的移动窗口自注意力计算(Shifted Windows Multi-Head Self-Attention(SW-MSA))。W-MSA是基于窗口的注意力计算。

2024-09-01 00:01:32 1218

原创 深度学习(10)---Vision Transformer详解

1. Vision Transformer(ViT)是一种基于Transformer架构的深度学习模型,它将Transformer模型从自然语言处理(NLP)领域成功扩展到计算机视觉(CV)领域。2. Vision Transformer由Google Brain团队在2020年提出,该模型挑战了卷积神经网络(CNN)在视觉任务中的主导地位,证明了Transformer架构不仅在处理序列数据(如文本)方面非常有效,在处理图像数据时也能取得卓越性能。

2024-08-19 17:21:23 3407 1

原创 深度学习(9)---ResNet详解

5. ResNet后面跟的数字,如ResNet18、ResNet50、ResNet101等,代表的是该网络结构中特定层的总数,具体来说,这个数字通常指的是卷积层与全连接层的和,而不包括池化层、批量归一化(BN)层等其他类型的层。这些数字反映了网络的深度,即网络的复杂度。3. 解决上述问题(模型走偏)的方法:每一次增加函数复杂度之后的函数所覆盖的区域会包含原来函数所在的区域(嵌套函数(nested function)),只有当较复杂的函数包含复杂度较小的函数时,才能确保提高它的性能,如下图所示。

2024-08-17 20:13:54 1699

原创 数据结构(4)

1. 树:树是n个结点的有限集。当n0时,称为空树。在任意一棵非空树中应该满足:(1) 有且仅有一个特定的称为根的节点。(2) 当n1时,其余结点可分为m个互不相交的有限集T1​Tm​,其中每个集合本身又是一棵树,并且称为根的子树。2. 显然树的定义是递归的,树是一种递归的数据结构。树具有以下两个特点:(1) 树的根结点没有前驱,除根结点外的所有结点有且只有一个前驱。(2) 树的所有结点都可以有零个或多个后继。

2024-08-07 00:20:26 679

原创 数据结构(3)

只允许在表的一端进行插入,而在表的另一端进行删除。5. 队列的链式表示称为链队列,它实际上是一个同时有队头指针和队尾指针的单链表。4. 采用链式存储的栈称为链栈,链栈的优点是便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。4. 循环队列:将顺序队列臆造为一个环状的空间,即把存储队列元素的表从逻辑上视为一个环,称为循环队列。3. 队列的顺序实现是指分配一块连续的存储单元存放队列中的元素,并附设两个指针:队头指针。(2) 栈底:固定的,不允许进行插入和删除的那一端。(2) 队尾:允许插入的一端。

2024-07-26 15:55:05 469

原创 数据结构(2)

为建立数据元素之间的线性关系,对每个链表结点,除存放元素自身的信息之外,还需要存放一个指向其后继的指针。为指针域,存放其后继结点的地址。由于单链表的元素离散地分布在存储空间中,因此是非随机存取的存储结构。1. 线性表的链式存储又称单链表。它是指通过一组任意的存储单元来存储线性表中的数据元素。的存储单元依次存储线性表中的数据元素,从而使得逻辑上相邻的两个元素在物理地址上也相邻。3. 顺序表的特点是表中元素的逻辑顺序与其存储的物理顺序相同。2. 线性表的顺序存储又称顺序表。,分别指向其直接前躯和直接后继。

2024-07-23 15:29:18 1246

原创 数据结构(1)

1. 数据:数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。如下面这幅图中的例子,为了方便讨论,这里我们把每一条语句的执行时间都看做是一样的,记为一个时间单元。1. 顺序存储结构:用一组连续的存储单元依次存储数据元素,数据元素之间的逻辑关系由元素的存储位置表示。2. 链接存储结构:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系用指针来表示。算法必须是有穷的,而程序可以是无穷的。数据对象:是具有相同性质的数据元素的集合,是数据的一个子集。

2024-07-19 15:51:41 621

原创 Hbase表结构

(2)每个CF可以有一个或多个列成员(ColumnQualifier),列成员不需要在定义表 时给出,新的列族成员可以随后按需要动态加入。6. 区域(Region):(1)HBase自动把表水平(按 Row)划分成多个区域(Region),每个Region会保存一个表里面某段连续的数据。(2)每个表一开始只有一个Region,随着数据不断插入表,Region不断增大,当增大到一个阈值的时候,Region就会等分为两个新的Region。行键(RowKey):(1)行键是字节数组,任何字符串都可以作为行键。

2024-06-30 00:36:38 594

原创 在Anaconda中安装keras-contrib库

如Anaconda中的base环境,打开\Anaconda\Lib\site-packages,创建keras-contrib文件夹并解压压缩包。1. 打开Anaconda Prompt命令行,激活自己的环境,并切换到keras-contrib中的keras-contrib-master路径下。打开网址 https://github.com/keras-team/keras-contrib 直接下载文件压缩包。:如果不能换盘cd,可以激活环境后先输入。:这里根据自己的环境选择。

2024-06-09 16:24:25 861 2

原创 云计算导论(3)---分布式文件系统

1. 文件系统是操作系统用来组织磁盘文件的方法和数据结构。传统的文件系统指各种UNIX平台的文件系统,包括UFS等,它们管理本地的磁盘存储资源,提供文件到存储位置的映射,并抽象出一套文件访问接口供用户使用。通常包含的四类信息:超级块、Inode、文件内容、目录内容。2. 分布式文件系统定义:分布式文件系统是一个可以存储、管理和检索文件、目录和对象的系统,它通过网络连接不同的机器,提供文件共享的接口,可以实现对文件的远程访问和同步。特点:分布式文件系统具有可靠性、容错性和可扩展性等特点。

2024-06-04 20:47:39 1129

原创 云计算导论(2)---云计算基础

3. 基础设施:云基础设施,即IaaS(Infrastructure as a Service),是经过虚拟化后的硬件资源和相关管理功能的集合,对内通过虚拟化技术对物理资源进行抽象,对外提供动态、灵活的资源服务。5. 平台:云平台,即PaaS(Platform as a Service),直接提供计算平台和解决方案作为服务,以方便应用程序部署,从而节省购买和管理底层硬件和软件的成本。(1) 选择合适的数据结构和算法:针对特定问题,选择时间和空间复杂度较低的数据结构和算法,减少不必要的计算和存储开销。

2024-05-10 17:04:00 1564

原创 云计算导论(1)---云计算概述

1. 云是网络、互联网的一种比喻说法。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。2. 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池。3. 云计算具有虚拟化、自动化、高可靠性、高弹性扩展、安全性高等特点。

2024-05-07 19:39:19 775 1

原创 神经网络与深度学习期末复习(6)---损失函数与优化算法

2. 作用:损失函数可以衡量模型预测的好坏,有助于优化网络的参数。1. 梯度的概念:梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。2. 自适应学习率算法思想:如果损失对于某个给定模型参数的偏导保持相同的符号,那么学习率应该增加。用于计算损失的函数称为损失函数,模型每一次预测的好坏用损失函数来度量。,那么我们就有理由相信,这些对应的特征在患病分析上面提供的信息是巨大的,决策性的。

2024-04-22 19:54:55 1063

原创 手写BP神经网络(简答易懂)

1. 经典的BP神经网络通常由三层组成:输入层、隐含层与输出层。通常输入层神经元的个数与特征数相关,输出层的个数与类别数相同, 隐含层的层数与神经元数均可以自定义。

2024-04-20 23:22:57 567

原创 神经网络与深度学习期末复习(5)---深度学习中的相关问题

1. 拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。拟合的曲线可以用函数表示,根据这个函数的不同有不同的拟合名字。拟合的方法包括回归、插值、和逼近。2. 拟合是一种数据处理的方式,不特指哪种方法,简单的说就是你有一组数据,觉得这组数据和一个已知的函数(这个函数的参数未定)很相似,为了得到最能表示这组数据特征的这个函数,通过拟合这种方式(具体的数学方法很多)求得参数。1. 反向传播过程中,会利用链式法则求梯度,比如一个常见的式子如下:2. 如果每一项∣ζ∣1|ζ|

2024-04-20 17:17:05 1355

原创 神经网络与深度学习期末复习(4)---自编码器

在整个训练过程中,自编码器的目标是最小化输入数据和重建数据之间的差异,以学习到更加有效的特征表示。因为稀疏的表达往往比其他的表达要有效(人脑好像也是这样的,某个输入只是刺激某些神经元,其他的大部分的神经元是受到抑制的)。编码过程是按照从前向后的顺序执行每一层自编码器的编码,解码过程按照从后向前的顺序执行每一层自编码器的解码。1. 栈式自编码器是一个由多层稀疏自编码器组成的神经网络,其前一层自编码器的输出作为其后一层自编码器的输入。(4) 将最后一个隐含层的输出作为有监督层的输入,并且初始化有监督层的参数。

2024-04-19 21:11:53 994

原创 神经网络与深度学习期末复习(1)---神经网络模型

4. BP(back propagation)神经网络的学习有信息的正向传播和误差的反向传播两个过程组成,学习规则采用Widrow-Hoff学习规则(最小均方差规则,梯度下降法),通过反向传播,不断调整网络的权重和阈值,使网络的误差平方和最小。2. 带动量因子算法:该方法是在反向传播法的基础上,在每一个权值的变化上加上一项正比于前次权之变化的值,并根据反向传播法来产生新的权值变化。(2) 误差曲线可能会出现局部的最小值,在网络学习时,应尽可能摆脱误差的局部最小值,而达到真正的误差最小值。

2024-04-18 15:17:18 1799

原创 图像处理与视觉感知---期末复习重点(8)

1. 梯度方向直方图(Histogram of Oriented Gradient, HOG):是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。HOG特征结合SVM分类器被广泛应用于图像识别中,尤其在行人检测。特征描述子就是将图像抽取部分有用信息,丢掉不相关的信息。特征描述子可以将一个weight×height×3weight×height×3。

2024-04-16 19:45:26 1731

原创 图像处理与视觉感知---期末复习重点(7)

2. 若编码时,对出现概率较大的符号用较少比特数(短码)表示,对出现概率较少的符号用较多比特数(长码)表示,则其平均码字长度要比等长编码时所需码字少。4. 心理视觉冗余:有些信息在通常的视觉过程中与另外一些信息相比并不那么重要,这些信息被认为是心理视觉冗余的,去除这些信息并不会明显降低图像质量。(2) 异同:离散傅里叶变换涉及复数运算,而离散余弦变换涉及实数运算,离散余弦变换是离散傅里叶变换的一种特殊形式。2. 编码冗余:如果一个图像的灰度级编码使用了多于实际需要的编码符号,就称该图像包含了编码冗余。

2024-04-12 01:21:51 1814

原创 计算机视觉之三维重建(7)---多视图几何(下)

1. 透视结构恢复问题:摄像机为透视相机,内外参数均未知。2. 问题:已知nnn个三维点XjX_jXj​在mmm张图像中的对应点的像素坐标为xijx_{ij}xij​,且xijMiXjxij​Mi​Xj​,其中MiM_iMi​为第iii张图片对应的摄像机投影矩阵,求解nnn个三维点XjX_jXj​的坐标以及mmm个摄像机投影矩阵MiM_iMi​。

2024-04-05 20:48:32 1513

原创 计算机视觉之三维重建(6)---多视图几何(上)

1. 欧式结构恢复问题:摄像机内参数已知,外参数未知情况。2. 对于欧式结构恢复问题,已知摄像机内参数,根据投影矩阵的计算公式可知xijMiXjKiRiTiXjxij​Mi​Xj​Ki​Ri​Ti​Xj​。那么求解投影矩阵MMM只需要求解外参数RT[R,T]RT。1. 仿射结构恢复问题:摄像机为仿射相机,内外参数均未知。一般来说仿射相机代表为弱透视投影摄像机。2. 下面图中所有坐标使用欧式坐标,对于仿射变换而言zzz。

2024-04-03 19:42:21 2151

原创 图像处理与视觉感知---期末复习重点(6)

1. 间断检测分为点检测、线检测和边缘检测。这里ZiZ_iZi​是与模板系数相联系的像素灰度级,模板响应定义是对于它的中心位置。1. 为什么需要边缘连接:由于噪声、照明等原因产生边缘间断,使得一组像素难以完整形成边缘;因此,在边缘检测算法后,使用连接过程将间断的边缘像素组合成完整边缘。2. 局部处理:分析图像中每个边缘点x。

2024-04-02 17:37:14 1367

原创 计算机视觉之三维重建(5)---双目立体视觉

2. (1) 平行视图中的视差图:根据两台平行摄像机在不同角度观察同一物体或场景时,由于视角差异造成的图像的差异进而推断出物体的深度和距离,得到一幅信息图,可以用于对物体或场景的三维重建和识别。作为相关性标准,该方法可行依据在于,一般情况下一个图像上像素颜色或灰度的变化是平滑的,这样近似相同点平方的最大值的和在理论上大于高偏差点平方的最大值的和。对于较小的窗口:会引入更多的噪声,更容易受到噪声影响,但反之也会在没有噪声影响的地方提供更精确的信息。点一定在扫描线上,这样可以进一步缩小的检索范围。

2024-03-30 20:17:36 3989

原创 图像处理与视觉感知---期末复习重点(5)

1. 开操作和闭操作实际就是腐蚀和膨胀的一个组合运算,公式如下所示。的映射的交集不为空集时,此时原点所在位置的像素就属于膨胀集合。的映像移动到上图三个位置时,因为原点处是空的,和图像集合。的子结构完重合时,此时原点所在位置的像素属于腐蚀集合。(3) 不停平移,直至找出组成膨胀集合的所有像素。(2) 重复上述操作,直至找出腐蚀集合的所有像素。没交集,即此时原点所在位置的像素不属于膨胀集合。(1) 开操作:先进行腐蚀,再进行膨胀。(2) 闭操作:先进行膨胀,再进行腐蚀。:是出现交集时,原点所在位置的像素。

2024-03-28 20:28:50 1925

原创 神经网络与深度学习期末复习(2)---卷积神经网络扩展机制

1. 分组卷积(Group convolution )最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此把特征图分给多个GPU分别进行处理,最后把多个GPU的结果进行融合。2. 一般的卷积会对输入数据的整体一起做卷积操作。而组卷积则是在深度上进行划分,即某几个通道编为一组,对输入数据做组合卷积操作。1. 在深度可分离卷积(depthwise separable convolution)中,通常将卷积操作拆分成多个步骤。

2024-03-27 20:45:54 1723

HomoGCL复现代码和运行视频

里面包含了代码和复现时的视频

2025-06-10

MobileNetV1-V4论文.rar

文件夹里包含了MobileNetV1-V4的论文,可以直接下载下来学习。

2024-12-08

YOLO系列v1~v10原论文.rar

该资源中包含了从YOLOv1~YOLOv10的所有内容,可以下载了解一下原理。

2024-12-03

YOLO格式下的行人识别数据集

这个文档中包含了行人数据集约四千张,在train文件中就包含了三千多张数据集。工具是使用了Labelimg进行标注。

2024-11-17

强化学习PPT(赵世钰)

强化学习的PPT,西湖大学赵世钰讲解的

2024-11-17

C-F-W安装软件-MAO.rar

这是C-F-W安装软件

2024-11-05

yolov10预训练模型.rar

在按照YOLOv10官网上的步骤进行时,运行app.py文件时,如果没有预训练模型的话会报错。解压压缩包里的内容到同级目录下(在requirements.txt文档下面),这样运行后就不会报错。

2024-11-05

YOLOv5口罩检测 标注好的数据集+训练好的模型.zip

这里是YOLOv5进行口罩佩戴检测的项目。里面包含了数据集(2000张数据集),源码和训练好的模型(可直接使用来检测)。如有问题可以私聊博主。

2024-10-11

Python实现拼图游戏.zip

用Python语言完成的拼图游戏,支持2×2、3×3等拼图,可自由选择。可作为课程设计或作业。

2024-10-10

数据库原理与应用实验(矿大版)

包含了两个小实验。第一个小实验是对表进行操作;第二个小实验是进行SQL查询,包含了15个查询小题目。

2023-11-03

数据库系统设计-校园物流系统

CUMT数据库系统设计大作业。主要使用workbench来设计,具体内容有需求分析、抽象出来的E-R图、转换关系模式、SQL语句等。

2023-11-03

MySQL版数据库原理与应用PPT

压缩包里有MySQL版数据库原理与应用的PPT。包含六章的内容,分别是:绪论、关系数据库、SQL语言、关系规范化理论、数据库设计、数据库保护。

2023-11-03

机器学习基础课程PPT

压缩包中包含了机器学习基础的知识,有线性模型、梯度下降、逻辑回归、神经网络、模型选择、决策树等知识。每一部分内容都有概念讲解和公式的推导。

2023-10-28

计算机算法设计与分析第五版王晓东PPT课件

本课程以王晓东编著的《计算机算法设计与分析》为教材,主要讲授内容:(1)算法概论,( 2)递归与分治策略,(3)动态规划,(4)贪心算法,(5)回溯法,(6)分支限界法,(7)随机化算法,(8)NPC理论,(9)补充内容。本课程的算法以c/c++实现。 有助于初学者课下自学和复习!

2023-10-25

人工智能导论第三版(丁世飞)PPT

人工智能导论第三版(丁世飞)PPT

2023-09-09

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除