堆排序
堆排序的前提是要有堆,而堆只要两种,一种是大根堆,一种是小根堆。
大根堆
那什么是大根堆呢?
从名字来看,大根大根可以联想到有一个树里面有一个大根。那树里面的大根联想树的根结点大于等于左右子树。
仔细观察,对于任意一课树,或者任意一颗子树,都有其父亲结点大于孩子结点。这就是大根堆的特性。
小根堆
同样的道理,可以得出结论:对于任意一课树,或者任意一颗子树,都有其父亲结点小于等于孩子结点。这就是小根堆的特性。
孩子结点和父亲结点的关系
以结点25为父亲结点。则36是它的左孩子,48为它的右孩子。
leftchild = parent *2+1;
3 = 1 * 2+1;
rightchild = parent *2+2;
4=1 * 2+2;
parent = (child -1)/2;
1=(3-1)/2;
1=(4-1)/2;
理解了上面的知识,我们继续向下看。
向下调整算法
向下调整算法的前提是左右子树都是小根堆。
开始向下调整。
思想: 找出根结点中左右子树的最小值,如果最小值比根结点小,则交换根结点和找出子树中的最小值。将根结点转移到最小值的子树位置。
在下面这副图中,p代表根结点,c代表根结点最小值的子树。一直循环到p结点为叶子结点则停止。
向下调整核心代码
void AdjustSort(int *a,int n,int root)
{
//找到父结点
int parent = root;
//默认为左子树
int child = parent * 2 + 1;
//从图中可以看到,当p结点为叶子结点时
//c几点已经超出了数组长度n.
while (child < n)
{
//如果右子树比左子树小,则孩子结点指向右子树
//否则孩子结点任然指向左子树。
//这里要特殊考虑到,左子树存在,但右子树不一定存在
if (child+1<n && a[child] > a[child + 1])
{
child += 1;
}
//如果子树结点值小于父结点,则进行交换
//父结点指向此时的子树
if (a[child] < a[parent])
{
swap(a[child], a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
但是我们需要排序的数组,不可能每次都是左右子树恰好都是小根堆或者都是大根堆。
这个时候怎么办呢?建堆,没有堆,那么就自己造堆。
造堆
造堆需要所有的子树都为大根堆或小根堆。那么从二叉树的末尾造堆是最好的选择,但是从末尾那个位置开始比较呢,从倒数第一个非叶子结点开始最好。
在这个二叉树中,最后的叶子结点本身就是大根堆或小根堆,所以高效的方法就是从倒数第一个非叶子结点开始。
造堆核心代码
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
//n-1是最后一个叶子结点的下标
// (n-1-1)/2 是最后一棵树的父节点
AdjustSort(a, n, i);
}
升序造大堆 向上调整
基本思想是选择排序。
如果建小堆,最小数在堆顶,已经被选出来了,那么要在剩下的数中在建一个堆,但是剩下的数据结构都乱了,需要重新新建一个堆。建堆的时间复杂度是o(N),这样也不是不可以,但是这样堆排序就没有优势效率了。
升序排序建大堆。
第一个和最后一个交换,把最后一个数不看在堆里。
前n-1个数向下调整(时间复杂度llog N向下调整二叉树的高度次)。
选出次大的数,再和倒数第二个位置进行交换。
升序排序源代码
#include<iostream>
using namespace std;
void Print(int* a, int n)
{
for (int i = 0; i < n; ++i)
{
cout << a[i] << " ";
}
cout << endl;
}
//向上调整
void upAdjustSort(int* a, int n, int root)
{
//将父结点认为根结点
int parent = root;
//默认孩子为左孩子
int child = parent * 2 + 1;
//当父结点指向叶子结点的时候
//孩子结点就会超出数组长度
while (child<n)
{
//找出两个左右孩子中最大的结点
//考虑极端情况,有左孩子但是没有右孩子
if (child+1<n && a[child] < a[child + 1])
{
child += 1;
}
//孩子结点大于父结点,则进行交换
if (a[child] > a[parent])
{
swap(a[child], a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int *a,int n)
{
//升序排序造大堆
//从倒数第一个非叶子结点开始造堆
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
//向上调整
upAdjustSort(a,n,i);
}
//开始排序
int end = n - 1;
while (end > 0)
{
//交换最大的数,和最后一个数的位置。
swap(a[0], a[end]);
upAdjustSort(a, end, 0);
end--;
}
}
void TestHeapSort()
{
int arr[] = { 27,15,19,18,28,34,65,49,25,37 };
HeapSort(arr, sizeof(arr) / sizeof(arr[0]));
Print(arr, sizeof(arr) / sizeof(arr[0]));
}
int main()
{
TestHeapSort();
return 0;
}
降序造小堆 向下调整
理解了升序,那么降序和升序相反即可。
#include<iostream>
using namespace std;
void Print(int* a, int n)
{
for (int i = 0; i < n; ++i)
{
cout << a[i] << " ";
}
cout << endl;
}
//向下调整
void updownAdjustSort(int* a, int n, int root)
{
//将父结点认为根结点
int parent = root;
//默认孩子为左孩子
int child = parent * 2 + 1;
//当父结点指向叶子结点的时候
//孩子结点就会超出数组长度
while (child<n)
{
//找出两个左右孩子中最小的结点
//考虑极端情况,有左孩子但是没有右孩子
if (child+1<n && a[child] > a[child + 1])
{
child += 1;
}
//孩子结点小于父结点,则进行交换
if (a[child] < a[parent])
{
swap(a[child], a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapSort(int *a,int n)
{
//降序排序造小堆
//从倒数第一个非叶子结点开始造堆
for (int i = (n - 1 - 1) / 2; i >= 0; --i)
{
//向上调整
updownAdjustSort(a,n,i);
}
//开始排序
int end = n - 1;
while (end > 0)
{
//交换最小的数,和最后一个数的位置。
swap(a[0], a[end]);
updownAdjustSort(a, end, 0);
end--;
}
}
void TestHeapSort()
{
int arr[] = { 27,15,19,18,28,34,65,49,25,37 };
HeapSort(arr, sizeof(arr) / sizeof(arr[0]));
Print(arr, sizeof(arr) / sizeof(arr[0]));
}
int main()
{
TestHeapSort();
return 0;
}
运行结果
觉得我回答有用的话,记得点个关注哟!谢谢支持!