
LangGraph
文章平均质量分 95
炼丹上岸
我很懒,还没有添加简介
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pregel 与 LangGraph:从分布式图计算到现代 AI 智能体的架构演进与 API 深度解析
本文探讨了Pregel并行图计算范式的核心原理及其在LangGraph中的创新应用。Pregel通过"像顶点一样思考"的编程模型和BSP执行机制,解决了MapReduce迭代计算效率低下的问题。LangGraph将这一思想转译为AI智能体编排框架,将顶点映射为行动者,消息转化为通道,超步转变为计划-执行-更新循环。这种设计使LangGraph能够支持状态化、多步推理的AI工作流,突破了传统线性链或DAG模型的限制。文章着重分析了两个系统在概念映射上的异同,特别是LangGraph如何将静原创 2025-08-30 19:46:09 · 545 阅读 · 0 评论 -
LangGraph 深度解析(二):掌握 LangGraph 函数式 API 的状态化 AI 工作流
摘要 本文介绍了LangGraph的函数式API及其构建应用的新方法。第一部分阐述了函数式API的核心理念,对比了函数式API与图API的特性差异,并详细解析了核心装饰器@entrypoint和@task的功能。第二部分通过实践示例展示了如何构建函数式工作流,包括处理输入、并行执行任务等技术要点。文章强调函数式API通过提供更符合Python习惯的编程方式,降低了构建复杂状态化应用的门槛,同时保留了LangGraph强大的运行时能力。文中包含的代码示例演示了从简单任务到并行处理的实际应用场景。原创 2025-08-30 19:16:33 · 651 阅读 · 0 评论 -
LangGraph 深度解析(一):从核心原理到生产级 Agent 工作流的构建
LangGraph:下一代智能体架构的核心引擎 摘要:LangGraph突破了传统线性链式结构的局限,构建了以状态为中心的智能体架构。其四大核心支柱包括:1)状态中心设计,通过类型化状态定义实现可靠数据流;2)显式控制流,支持复杂分支和循环结构;3)生产就绪性,内置重试和缓存机制;4)内省可视化,便于调试和优化。LangGraph采用函数式编程思想,通过不可变状态更新和Reducer机制实现安全并发,为构建复杂AI工作流提供了声明式的解决方案。这种架构使开发者能够设计出更强大、可靠的自主智能体系统,支持从简原创 2025-08-30 18:25:52 · 480 阅读 · 0 评论