数据结构 | 第十五章:平衡搜索树——AVL树 | AVL树的搜索、插入、删除

本文详细介绍了AVL树的概念,包括其定义、性质和平衡因子。阐述了AVL树的搜索、插入和删除操作,并对插入后可能导致的不平衡状态及其对应的旋转调整策略进行了说明。通过具体的模型抽象和流程示例,帮助读者理解AVL树的运作机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

AVL树

  • 空二叉树是AVL树。

  • 如果T是一棵非空的二叉树, T L T_L TL T R T_R TR分别是其左子树右子树,当T满足以下条件时,T是一棵AVL树。

    • T L T_L TL T R T_R TR是AVL树
    • ∣ h L − h R ∣ ≤ 1 |h_L-h_R|≤1 hLhR1 h L h_L hL h R h_R hR分别是左子树和右子树的高度。
    1. 左右子树均是AVL树
    2. 左子树与右子树的高度之差的绝对值不超过1

AVL搜索树

  • 既是二叉搜索树,也是AVL树

  • AVL树:(a) (b) AVL搜索树:(b)

在这里插入图片描述

带索引的AVL搜索树

  • 既是带索引的二叉搜索树,也是AVL树在这里插入图片描述

AVL树特征

  • n个节点的AVL树的高度是 O ( l o g n ) O(logn) O(logn)
  • 对于每一个n(n≥0)值,都存在一棵AVL树。
    • 将一个新元素插入到一棵n元素的AVL搜索树中,可得到一棵n+1元素的AVL树,这种插入过程可以在 O ( l o g n ) O(logn) O(logn)时间内完成。
    • 从一棵n元素的AVL搜索树中删除一个元素,可得到一棵n-1元素的AVL树,这种删除过程可以在 O ( l o g n ) O(logn) O(logn)时间内完成。
  • 一棵n元素的AVL搜索树能在 O ( 高度 ) = O ( l o g n ) O(高度)=O(logn) O(高度)=O(logn)的时间内完成搜索。
  • 一棵有n个节点的AVL树的高度
    • 至多: l o g 2 ( n + 2 ) log_2(n+2) log2(n+2)
    • 至少: l o g 2 ( n + 1 ) log_2(n+1) log2(n+1)

AVL树的描述

一般用链表方式来描述,要为每个节点增加一个平衡因子

  • 平衡因子(Balance Factor):节点x的平衡因子bf(x)定义为:x的左子树的高度-x的右子树的高度

  • AVL树平衡因子的可能取值为:-1,0,和1在这里插入图片描述

AVL搜索树的搜索

即二叉搜索树的搜索

AVL搜索树的插入

二叉搜索树的插入,但得到的树可能不再是AVL树,这时我们需要调整来恢复。每插入一个新节点时,就会调整树的结构

  • 在插入后,A的平衡因子是-2或2,当节点A 已经被确定时,A的不平衡性:

    1. LL:新插入节点在A节点的左子树的左子树中
    2. LR:新插入节点在A节点的左子树的右子树中
    3. RR:新插入节点在A节点的右子树的右子树中
    4. RL:新插入节点在A节点的右子树的左子树中
  • 调整旋转类型

    1. 单旋转:矫正LLRR型不平衡所作的转换

    2. 双旋转:矫正LRRL型不平衡所作的转换

      LR型不平衡的旋转可以看作RR旋转后的LL旋转

      旋转调整后——消除不和谐平衡因子

LL旋转
模型抽象

在这里插入图片描述

流程示例

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

RR旋转
模型抽象

在这里插入图片描述

流程示例

在这里插入图片描述

在这里插入图片描述

LR旋转
模型抽象

在这里插入图片描述

最后就是A,B,C三个最小的作为左子树,最大的作为右子树,中间大的作为根

流程示例

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

RL旋转
模型抽象

在这里插入图片描述

最后就是A,B,C三个最小的作为左子树,最大的作为右子树,中间大的作为根

流程示例

在这里插入图片描述

在这里插入图片描述

AVL树初始化(插入应用)
一道例题

在这里插入图片描述
⚠️易错提醒:判断是什么旋转要从最底下最先出现的不正常平衡因子那开始,比如上题在插入9后,要考虑是16\11\9LL旋转,而非7\16\11RL旋转

AVL搜索树的删除

通过执行二叉搜索树的删除,可从AVL搜索树中删除一个元素。但也会导致产生不平衡树。

删除操作参考搜索树的删除,指路14.3操作erase

设q:删除节点的父节点。

  • 如果q新的平衡因子是0,那么它的高度减少了1,需要改变它的父节点(如果有的话)和其他某些祖先节点的平衡因子。在这里插入图片描述

  • 如果q新的平衡因子是-1或1,那么它的高度与删除前相同,无需改变其祖先的平衡因子值。

  • 如果q新的平衡因子是-2或2,那么树在q节点是不平衡的,需要调整

    • 由删除操作产生的不平衡有六种类型:R0,R1,R-1,L0,L1,L-1。
R0旋转(L0镜像)
模型抽象

在这里插入图片描述

流程示例

在这里插入图片描述

R1旋转(L1镜像)
模型抽象

在这里插入图片描述

流程示例

在这里插入图片描述

R-1旋转(L-1镜像)
模型抽象

在这里插入图片描述

流程示例

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值