数据结构 | 第十九章:动态规划 | Floyd算法

本文介绍了动态规划中的多源最短路径问题,重点讲解了Floyd算法的基本思想、关键点分析以及伪代码实现。Floyd算法适用于寻找图中每对顶点之间的最短路径,但不适用于负权边的环路。算法通过三层循环更新最短路径,时间复杂度为O(n^3)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📘动态规划基本思想

🔑将一个问题的看作是为一系列决策的结果

🔑在动态规划中,要确定每个最优决策序列中是否包含最优决策子序列

  • 用子问题的最优解来构造原问题的最优解

📚多源最短路径问题

🐇问题描述

  • 在n个顶点的有向图G中,寻找每一对顶点之间的最短路径,即对于每对顶点(i,j),需要寻找从i到j的最短路径从j到i的最短路径,对于无向图,这两条路径是一条。
  • 对一个n个顶点的有向图,需寻找p=n(n-1) 条最短路径。

❓这一问题能否用Dijkstra算法求解

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值