信息检索与数据挖掘 | (五)文档评分、词项权重计算及向量空间模型

本文详细介绍了信息检索中的文档评分和词项权重计算,重点讲解了词项频率(TF)、逆文档频率(IDF)以及它们结合形成的tf-idf权重计算。此外,还探讨了向量空间模型中的余弦相似度用于查询与文档的相似度计算,以及不同tf-idf权值计算方法,如tf的亚线性尺度变换和基于最大值的tf归一化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

📚词项频率及权重计算

🐇词项频率

🐇逆文档频率

🐇tf-idf权重计算

📚向量空间模型

🐇余弦相似度

🐇查询向量

🐇向量相似度计算

📚其他tf-idf权值计算方法

🐇tf的亚线性尺度变换方法

🐇基于最大值的tf归一化

🐇文档权值和查询权重机


我们需要一种方法分配一个分数,如果查询项不出现在文档,分数应该是0,更频繁的查询项的文档,分数越高。

在文档集规模很大的情况下,满足布尔查询的结果文档数量可能非常多,往往会大大超过用户能够浏览的文档数目。因此对搜索引擎来说,对文档进行评分和排序非常重要。

📚词项频率及权重计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值