信息检索与数据挖掘 | (十一)深度学习

本文介绍了深度学习中的全连接前反馈网络,其中神经网络通过学习权重和偏差进行参数θ的优化。全连接层利用隐藏层进行特征抽取,结合Softmax函数将输出转化为多分类概率分布。此外,还探讨了Softmax函数的应用和优化方程,特别是在交叉熵损失函数下的梯度下降更新过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


​🐾 主体思想:先进行特征转化然后再进行分类

对于神经网络来说不同的链接方式会产生不同的网络结构,网络的参数 θ \theta θ表示所有神经元中的权重和bias(偏差)

📚全连接前反馈网络

在这里插入图片描述

  • 函数说明:给定神经网络需要同时定义一系列的函数集合:
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值