文章目录 📚聚类 📚KMeans 📚层次聚类 🐇层次聚类概述 🐇dendrogram-树状图 🐇linkages-衡量两个类之间的距离 🐇Lance-Williams算法 🐇K-means VS 层次聚类 📚DBSCAN 📚聚类 定义:聚类是一种无监督学习,样本没有标签,将一群样本划分到一个类中,使得:最大化类间距,最小化类内 距离测量指标: 四种聚类: 基于质心的聚类,使用中心表示该簇(K-means,K-medoids) 基于链接的聚类:层次聚类-在一定阈值处切断树,从而得到几个类 基于密度的聚类,DBSCAN,OPTICS,将高密度的区域连接起来 基于分布的聚类,Mixture models 📚KMeans K-means的思想:最小化数据到中心点的方差S,算法的目标是最小化数据