信息检索与数据挖掘 | (十二)聚类

本文深入探讨了两种常见的聚类算法:KMeans和层次聚类。KMeans算法基于质心,通过迭代更新找到最佳聚类,但需要预设簇的数量,对初始化敏感。层次聚类则通过构建层次结构来自动聚类,无需预设簇数,但计算复杂度较高。文章还讨论了两者的优势和局限,以及如何在实际应用中选择合适的聚类方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📚聚类

  • 定义:聚类是一种无监督学习,样本没有标签,将一群样本划分到一个类中,使得:最大化类间距,最小化类内

  • 距离测量指标
    在这里插入图片描述

  • 四种聚类

    1. 基于质心的聚类,使用中心表示该簇(K-means,K-medoids)

    2. 基于链接的聚类:层次聚类-在一定阈值处切断树,从而得到几个类

    3. 基于密度的聚类,DBSCAN,OPTICS,将高密度的区域连接起来

    4. 基于分布的聚类,Mixture models

📚KMeans

  • K-means的思想:最小化数据到中心点的方差S,算法的目标是最小化数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值