下面欣赏一下论文中的图和表:
1、与YOLOs的性能对比图
2、不同置信度阈值下的框数
3、IoU阈值和置信度阈值对准确性和NMS执行时间的影响
4、混合编码器不同变体
5、模型概述。将骨干网后三个阶段的特征输入到编码器中。高效混合编码器通过基于注意力的尺度内特征交互(AIFI)和基于cnn的跨尺度特征融合(CCFF)将多尺度特征转化为图像特征序列。然后,最小不确定性查询选择选择固定数量的编码器特征作为解码器的初始对象查询。
最后,具有辅助预测头的解码器迭代优化对象查询以生成类别和框