💡💡💡我们引入了一种名为频率动态卷积(FDConv)的创新方法,通过在傅里叶域中学习固定参数预算来缓解这些问题。FDConv 将这些预算分配到具有不相交傅里叶索引的频率组中,从而能够在不增加参数成本的情况下构建频率多样的权重。
💡💡💡大量在目标检测、分割和分类任务上的实验验证了 FDConv 的有效性。我们证明,当应用于 ResNet-50 时,FDConv 仅需小幅增加 +3.6M 参数,就能取得优于以往方法(例如 CondConv 增加 90M、KW 增加 76.5M 参数)的性能。此外,FDConv 能够无缝集成到多种架构中,包括 ConvNeXt 和 Swin-Transformer,为现代视觉任务提供了一种灵活且高效的解决方案。
改进结构图如下:
《YOLOv13魔术师专栏》将从以下各个方向进行创新:
链接: