智能电商推荐系统开发流程与工作进度
一、开发流程
1. 需求分析与系统设计(1周)
-
目标:明确系统核心功能与非功能需求,完成技术方案设计。
-
任务:
-
功能模块拆解:
-
核心功能:
-
用户模块:注册/登录、个人信息管理、行为数据采集(浏览、搜索、购买)。
-
商品模块:分类展示、搜索、详情页、多维度标签(价格、品牌、销量)。
-
推荐模块:基于协同过滤/深度学习(如矩阵分解、神经网络)的个性化推荐。
-
订单模块:购物车、沙箱支付(模拟支付宝/微信)、订单状态跟踪。
-
社交购物:用户评论、分享商品至社交平台、好友推荐。
-
后台管理:商品上下架、用户行为分析、推荐效果监控。
-
-
创新功能:
-
沙箱支付:集成支付宝沙箱接口完成模拟支付流程。
-
社交购物:用户生成内容(UGC)展示与互动。
-
-
-
技术方案设计:
-
推荐算法:使用 Apache Mahout 或 TensorFlow Java API 实现协同过滤。
-
支付集成:通过支付宝开放平台沙箱环境实现支付功能。
-
数据存储:MySQL 存储用户行为数据,Redis 缓存热门商品和推荐结果。
-
-
输出文档:
-
系统原型图(Axure/Mockplus)、数据库ER图、接口文档。
-
-
2. 环境搭建与工具配置(2天)
-
目标:完成本地开发环境与团队协作配置。
-
任务:
-
开发工具安装:
-
Eclipse:安装 Spring Tools Suite (STS) 插件、Lombok 插件。
-
MySQL 5.7:配置字符集为
utf8mb4
,支持表情符号存储。 -
Navicat 11:连接数据库,管理表结构与数据导入。
-
Maven 3.3.9:配置阿里云镜像加速依赖下载。
-
-
项目初始化:
-
创建 Spring Boot 项目,配置
pom.xml
:xml
复制
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.1.18.RELEASE</version> <!-- 兼容 JDK 1.8 --> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.49</version> <!-- 匹配 MySQL 5.7 --> </dependency> </dependencies>
运行 HTML
-
-
3. 数据库设计与实现(3天)
-
目标:完成数据库表结构设计与数据初始化。
-
任务:
-
表结构设计(关键表):
-
用户表
user
:sql
复制
CREATE TABLE `user` ( `id` INT PRIMARY KEY AUTO_INCREMENT, `username` VARCHAR(50) UNIQUE NOT NULL, `password` VARCHAR(100) NOT NULL, `email` VARCHAR(100), `create_time` DATETIME DEFAULT CURRENT_TIMESTAMP );
-
用户行为表
user_behavior
:sql
复制
CREATE TABLE `user_behavior` ( `id` INT PRIMARY KEY AUTO_INCREMENT, `user_id` INT NOT NULL, `product_id` INT NOT NULL, `behavior_type` ENUM('浏览', '收藏', '购买') NOT NULL, `timestamp` DATETIME DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY (`user_id`) REFERENCES `user`(`id`), FOREIGN KEY (`product_id`) REFERENCES `product`(`id`) );
-
商品表
product
:包含商品标签字段(如tags
JSON 类型)。
-
-
数据初始化:
-
使用 Navicat 导入测试数据(如 1000 条商品信息)。
-
-
索引优化:
-
为高频查询字段(如
user_id
,product_id
)添加索引。
-
-
4. 后端开发(3周)
-
目标:实现业务逻辑、推荐算法与第三方接口集成。
-
任务:
-
模块开发:
-
用户模块:
-
接口:
/api/register
,/api/login
,/api/user/behavior
(记录用户行为)。 -
代码示例(JPA 实现):
java
复制
@Repository public interface UserRepository extends JpaRepository<User, Integer> { User findByUsername(String username); }
-
-
推荐模块:
-
接口:
/api/recommend?userId=1
(返回推荐商品列表)。 -
算法实现(基于用户行为的协同过滤):
java
复制
public List<Product> recommendProducts(int userId) { // 1. 获取用户历史行为 List<UserBehavior> behaviors = userBehaviorRepository.findByUserId(userId); // 2. 计算相似用户 Map<Integer, Double> similarUsers = calculateSimilarity(behaviors); // 3. 生成推荐列表 return filterTopNProducts(similarUsers); }
-
-
沙箱支付模块:
-
集成支付宝沙箱接口,实现
/api/pay
接口。 -
关键依赖:
xml
复制
<dependency> <groupId>com.alipay.sdk</groupId> <artifactId>alipay-sdk-java</artifactId> <version>4.22.100</version> </dependency>
运行 HTML
-
-
-
社交功能:
-
接口:
/api/comment
(发布评论)、/api/share
(分享至微信/QQ)。
-
-
5. 前端开发(2周)
-
目标:实现用户界面与交互逻辑。
-
任务:
-
页面开发:
-
首页:个性化推荐商品流、搜索栏。
html
复制
<div th:each="product : ${recommendList}"> <img th:src="${product.imageUrl}" /> <p th:text="${product.name}"></p> </div>
运行 HTML
-
商品详情页:商品图片、加入购物车按钮、用户评论展示。
-
支付页:模拟支付宝沙箱支付界面。
-
-
前端技术栈:
-
模板引擎:Thymeleaf。
-
动态交互:Ajax 调用后端 API。
-
样式库:Bootstrap 4。
-
-
6. 测试与优化(1.5周)
-
目标:确保功能稳定,优化系统性能。
-
任务:
-
单元测试:
java
复制
@SpringBootTest public class RecommendationTest { @Autowired private RecommendationService recommendationService; @Test public void testRecommendationAccuracy() { List<Product> products = recommendationService.recommendProducts(1); Assert.isTrue(products.size() > 0, "推荐结果不应为空"); } }
-
压力测试:
-
使用 JMeter 模拟 1000 并发用户,测试推荐接口响应时间。
-
-
优化措施:
-
缓存:使用 Redis 缓存推荐结果,减少数据库查询。
-
SQL 优化:为
user_behavior
表添加复合索引(user_id, behavior_type)
。
-
-
7. 部署与验收(3天)
-
目标:将系统部署至 Tomcat 7,准备答辩材料。
-
任务:
-
打包与部署:
-
修改
pom.xml
生成 WAR 包:xml
复制
<packaging>war</packaging> <build> <finalName>smart-recommend</finalName> </build>
运行 HTML
-
将 WAR 文件放入
tomcat7/webapps
,启动 Tomcat。
-
-
验收准备:
-
编写部署文档、用户手册。
-
制作答辩 PPT,重点展示推荐算法设计与创新功能。
-
-
二、工作进度计划表
阶段 | 时间跨度 | 关键交付物 |
---|---|---|
需求分析与设计 | 第1周 | 需求文档、原型图、ER 图 |
环境搭建 | 第1周 | Maven 配置、本地开发环境 |
数据库实现 | 第2周 | SQL 脚本、Navicat 数据导入 |
后端开发 | 第3-5周 | 核心接口、推荐算法、支付集成 |
前端开发 | 第6-7周 | 用户界面、交互逻辑 |
测试与优化 | 第8周 | 测试报告、性能优化记录 |
部署与答辩准备 | 第9周 | WAR 包、部署文档、答辩PPT |
三、风险与应对
-
推荐算法效果不佳:
-
应对:先用简单规则(如热门商品)兜底,逐步优化算法。
-
-
支付接口集成失败:
-
应对:参考支付宝官方文档,使用沙箱环境调试。
-
-
性能瓶颈:
-
应对:引入 Redis 缓存、分库分表(按用户ID哈希)。
-
通过以上流程,你可以系统化地完成毕业设计,确保功能完备且创新点突出,最终交付一个高效、智能的电商推荐系统。