智能电商推荐系统开发流程与工作进度

智能电商推荐系统开发流程与工作进度


一、开发流程

1. 需求分析与系统设计(1周)
  • 目标:明确系统核心功能与非功能需求,完成技术方案设计。

  • 任务

    1. 功能模块拆解

      • 核心功能

        • 用户模块:注册/登录、个人信息管理、行为数据采集(浏览、搜索、购买)。

        • 商品模块:分类展示、搜索、详情页、多维度标签(价格、品牌、销量)。

        • 推荐模块:基于协同过滤/深度学习(如矩阵分解、神经网络)的个性化推荐。

        • 订单模块:购物车、沙箱支付(模拟支付宝/微信)、订单状态跟踪。

        • 社交购物:用户评论、分享商品至社交平台、好友推荐。

        • 后台管理:商品上下架、用户行为分析、推荐效果监控。

      • 创新功能

        • 沙箱支付:集成支付宝沙箱接口完成模拟支付流程。

        • 社交购物:用户生成内容(UGC)展示与互动。

    2. 技术方案设计

      • 推荐算法:使用 Apache Mahout 或 TensorFlow Java API 实现协同过滤。

      • 支付集成:通过支付宝开放平台沙箱环境实现支付功能。

      • 数据存储:MySQL 存储用户行为数据,Redis 缓存热门商品和推荐结果。

    3. 输出文档

      • 系统原型图(Axure/Mockplus)、数据库ER图、接口文档。


2. 环境搭建与工具配置(2天)
  • 目标:完成本地开发环境与团队协作配置。

  • 任务

    1. 开发工具安装

      • Eclipse:安装 Spring Tools Suite (STS) 插件、Lombok 插件。

      • MySQL 5.7:配置字符集为 utf8mb4,支持表情符号存储。

      • Navicat 11:连接数据库,管理表结构与数据导入。

      • Maven 3.3.9:配置阿里云镜像加速依赖下载。

    2. 项目初始化

      • 创建 Spring Boot 项目,配置 pom.xml

        xml

        复制

        <parent>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-parent</artifactId>
            <version>2.1.18.RELEASE</version> <!-- 兼容 JDK 1.8 -->
        </parent>
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-data-jpa</artifactId>
            </dependency>
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.49</version> <!-- 匹配 MySQL 5.7 -->
            </dependency>
        </dependencies>

        运行 HTML


3. 数据库设计与实现(3天)
  • 目标:完成数据库表结构设计与数据初始化。

  • 任务

    1. 表结构设计(关键表):

      • 用户表 user

        sql

        复制

        CREATE TABLE `user` (
            `id` INT PRIMARY KEY AUTO_INCREMENT,
            `username` VARCHAR(50) UNIQUE NOT NULL,
            `password` VARCHAR(100) NOT NULL,
            `email` VARCHAR(100),
            `create_time` DATETIME DEFAULT CURRENT_TIMESTAMP
        );
      • 用户行为表 user_behavior

        sql

        复制

        CREATE TABLE `user_behavior` (
            `id` INT PRIMARY KEY AUTO_INCREMENT,
            `user_id` INT NOT NULL,
            `product_id` INT NOT NULL,
            `behavior_type` ENUM('浏览', '收藏', '购买') NOT NULL,
            `timestamp` DATETIME DEFAULT CURRENT_TIMESTAMP,
            FOREIGN KEY (`user_id`) REFERENCES `user`(`id`),
            FOREIGN KEY (`product_id`) REFERENCES `product`(`id`)
        );
      • 商品表 product:包含商品标签字段(如 tags JSON 类型)。

    2. 数据初始化

      • 使用 Navicat 导入测试数据(如 1000 条商品信息)。

    3. 索引优化

      • 为高频查询字段(如 user_idproduct_id)添加索引。


4. 后端开发(3周)
  • 目标:实现业务逻辑、推荐算法与第三方接口集成。

  • 任务

    1. 模块开发

      • 用户模块

        • 接口:/api/register/api/login/api/user/behavior(记录用户行为)。

        • 代码示例(JPA 实现):

          java

          复制

          @Repository
          public interface UserRepository extends JpaRepository<User, Integer> {
              User findByUsername(String username);
          }
      • 推荐模块

        • 接口:/api/recommend?userId=1(返回推荐商品列表)。

        • 算法实现(基于用户行为的协同过滤):

          java

          复制

          public List<Product> recommendProducts(int userId) {
              // 1. 获取用户历史行为
              List<UserBehavior> behaviors = userBehaviorRepository.findByUserId(userId);
              // 2. 计算相似用户
              Map<Integer, Double> similarUsers = calculateSimilarity(behaviors);
              // 3. 生成推荐列表
              return filterTopNProducts(similarUsers);
          }
      • 沙箱支付模块

        • 集成支付宝沙箱接口,实现 /api/pay 接口。

        • 关键依赖:

          xml

          复制

          <dependency>
              <groupId>com.alipay.sdk</groupId>
              <artifactId>alipay-sdk-java</artifactId>
              <version>4.22.100</version>
          </dependency>

          运行 HTML

    2. 社交功能

      • 接口:/api/comment(发布评论)、/api/share(分享至微信/QQ)。


5. 前端开发(2周)
  • 目标:实现用户界面与交互逻辑。

  • 任务

    1. 页面开发

      • 首页:个性化推荐商品流、搜索栏。

        html

        复制

        <div th:each="product : ${recommendList}">
            <img th:src="${product.imageUrl}" />
            <p th:text="${product.name}"></p>
        </div>

        运行 HTML

      • 商品详情页:商品图片、加入购物车按钮、用户评论展示。

      • 支付页:模拟支付宝沙箱支付界面。

    2. 前端技术栈

      • 模板引擎:Thymeleaf。

      • 动态交互:Ajax 调用后端 API。

      • 样式库:Bootstrap 4。


6. 测试与优化(1.5周)
  • 目标:确保功能稳定,优化系统性能。

  • 任务

    1. 单元测试

      java

      复制

      @SpringBootTest
      public class RecommendationTest {
          @Autowired
          private RecommendationService recommendationService;
          
          @Test
          public void testRecommendationAccuracy() {
              List<Product> products = recommendationService.recommendProducts(1);
              Assert.isTrue(products.size() > 0, "推荐结果不应为空");
          }
      }
    2. 压力测试

      • 使用 JMeter 模拟 1000 并发用户,测试推荐接口响应时间。

    3. 优化措施

      • 缓存:使用 Redis 缓存推荐结果,减少数据库查询。

      • SQL 优化:为 user_behavior 表添加复合索引 (user_id, behavior_type)


7. 部署与验收(3天)
  • 目标:将系统部署至 Tomcat 7,准备答辩材料。

  • 任务

    1. 打包与部署

      • 修改 pom.xml 生成 WAR 包:

        xml

        复制

        <packaging>war</packaging>
        <build>
            <finalName>smart-recommend</finalName>
        </build>

        运行 HTML

      • 将 WAR 文件放入 tomcat7/webapps,启动 Tomcat。

    2. 验收准备

      • 编写部署文档、用户手册。

      • 制作答辩 PPT,重点展示推荐算法设计与创新功能。


二、工作进度计划表

阶段时间跨度关键交付物
需求分析与设计第1周需求文档、原型图、ER 图
环境搭建第1周Maven 配置、本地开发环境
数据库实现第2周SQL 脚本、Navicat 数据导入
后端开发第3-5周核心接口、推荐算法、支付集成
前端开发第6-7周用户界面、交互逻辑
测试与优化第8周测试报告、性能优化记录
部署与答辩准备第9周WAR 包、部署文档、答辩PPT

三、风险与应对

  1. 推荐算法效果不佳

    • 应对:先用简单规则(如热门商品)兜底,逐步优化算法。

  2. 支付接口集成失败

    • 应对:参考支付宝官方文档,使用沙箱环境调试。

  3. 性能瓶颈

    • 应对:引入 Redis 缓存、分库分表(按用户ID哈希)。


通过以上流程,你可以系统化地完成毕业设计,确保功能完备且创新点突出,最终交付一个高效、智能的电商推荐系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值