RNN:Long Short-term Memory(中)

本文详细介绍了LSTM(长短期记忆)神经网络的工作原理,包括其复杂的结构(输入门、遗忘门和输出门)、如何控制记忆和输出,以及与传统RNN的区别。通过实例和流程图展示了LSTM如何通过矩阵运算处理输入和记忆,以实现对信息的长期记忆能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1  LSTM 的简图

2  LSTM 的整体结构

2.1  结构图

2.2  流程图

3  举个例子

3.1  简单看看

3.2  代入 LSTM

4  Original Network v.s. LSTM

5  细看 LSTM


原视频:李宏毅 2020:Recurrent Neural Network (Part I)

1  LSTM 的简图

LSTM 实际上就是一种特殊的神经元,只是长得比较复杂罢了。可以看出,它就是在 memory 的基础上加了三个门:输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate),四者关系如下图所示:

LSTM 三个门的作用:

  • 输入门(Input Gate):控制 LSTM 是否接收当前的输入
  • 遗忘门(Forget Gate):控制 LSTM 是否丢掉 memory 中的内容
  • 输出门(Output Gate):控制 LSTM 是否允许对处理结果进行输出

三个门的开或闭均由信号(signal)控制,这些信号均来自网络的其他部分。

LSTM 的特点是:

  • 四个输入,图中用红线表示,输入均来自网络的其他部分
  • 一个输出,图中用绿线表示,输出也将送往网络的其他部分

如何理解 Long Short-term Memory 这个名称?它的意思就是 Long 的 Short-term 的 Memory,即虽然长但毕竟还是短期的记忆。在 RNN 中,一旦计算出当前时刻隐层的输出,那么 memory 中的内容会立马被冲掉或者说是被替换掉。而在 LSTM 中,有了输入门(Input Gate)和遗忘门(Forget G

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值