博主介绍:
✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。技术范围:
我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。主要内容:
我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。🍅获取源码请在文末联系我🍅
温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!
目录:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
一、详细操作演示视频
在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!
承诺所有开发的项目,全程售后陪伴!!!
1 引言
随着全球气候变化和极端天气事件增多,准确的天气预测对农业、交通、能源等行业具有重要意义。本课题基于 Django 框架,结合大数据分析与机器学习技术,设计并实现一个天气预测数据分析系统。该系统可自动采集多源气象数据,进行清洗、特征提取与模型训练,并通过 Web 界面和 API 提供可视化预测结果与深度分析报告,为相关决策提供量化支持。
2 技术选型
2.1 Python 语言
-
易用性与生态:借助 Pandas、NumPy、Scikit-learn、Statsmodels 等库完成数据处理与模型训练。
-
后台开发:使用 Django 提供 MVT(Model-View-Template)架构,快速构建稳定的 Web 服务。
-
调度脚本:通过 Celery + Redis 定时拉取数据、重训练模型及发送提醒。
2.2 Django 框架
-
ORM:对接 PostgreSQL/MySQL 存储历史气象与预测结果。
-
视图与模板:使用 Django REST framework 构建 JSON 接口,结合前端模板或 Vue.js 渲染可视化页面。
-
权限管理:内置用户认证、分组与权限控制,支持管理员与普通用户角色区分。
2.3 大数据存储与消息队列
-
PostgreSQL:存储结构化观测数据、模型元信息及用户操作记录。
-
Redis:作为 Celery 的消息中间件与缓存层,加速高频查询。
2.4 机器学习与时间序列分析
-
特征工程:基于滑动窗口提取温度、湿度、气压、风速等历史统计特征;融合 NWP(数值天气预报)输出。
-
模型算法:采用 SARIMA、Prophet、XGBoost 回归等多种模型,并集成成加权平均或堆叠模型以提升预测精度。
-
模型管理:使用 MLflow 记录实验、参数与模型版本,实现可视化对比与回溯。
2.5 可视化工具
-
前端图表:ECharts/Plotly 绘制折线图、热力图、风玫瑰图等;
-
报表导出:支持生成 PDF/Excel 格式的预测报告,供用户下载。
系统实现界面展示:
爬虫训练模型代码示例:
### 数据爬取与清洗 (weather_scraper.py)
```python
import requests
import pandas as pd
import time
from datetime import datetime, timedelta
# 配置
API_KEY = 'YOUR_OPENWEATHERMAP_API_KEY'
BASE_URL = 'https://api.openweathermap.org/data/2.5/onecall/timemachine'
LOCATION = {'lat': 37.7749, 'lon': -122.4194} # 示例:旧金山
START_DATE = datetime(2025, 1, 1)
END_DATE = datetime(2025, 6, 30)
OUTPUT_CSV = 'data/weather_raw.csv'
# 循环遍历日期,按天获取历史天气
rows = []
current = START_DATE
while current <= END_DATE:
timestamp = int(current.replace(hour=12).timestamp())
params = {
'lat': LOCATION['lat'],
'lon': LOCATION['lon'],
'dt': timestamp,
'appid': API_KEY,
'units': 'metric'
}
resp = requests.get(BASE_URL, params=params)
if resp.status_code == 200:
data = resp.json()
for hour in data.get('hourly', []):
rows.append({
'dt': datetime.fromtimestamp(hour['dt']),
'temp': hour.get('temp'),
'pressure': hour.get('pressure'),
'humidity': hour.get('humidity'),
'wind_speed': hour.get('wind_speed'),
'weather_main': hour['weather'][0]['main'],
'weather_desc': hour['weather'][0]['description']
})
print(f"Fetched {current.date()}")
else:
print(f"Failed {current.date()}: {resp.status_code}")
current += timedelta(days=1)
time.sleep(1) # 避免频率限制
# 保存原始数据
df_raw = pd.DataFrame(rows)
df_raw.to_csv(OUTPUT_CSV, index=False)
print(f"Raw data saved to {OUTPUT_CSV}")
```
```python
### 数据清洗与特征工程 (weather_cleaning.py)
import pandas as pd
from datetime import datetime
df = pd.read_csv('data/weather_raw.csv', parse_dates=['dt'])
# 缺失值处理
for col in ['temp', 'pressure', 'humidity', 'wind_speed']:
df[col].fillna(df[col].interpolate(), inplace=True)
# 添加时间特征
df['hour'] = df['dt'].dt.hour
df['dayofweek'] = df['dt'].dt.dayofweek
df['is_weekend'] = df['dayofweek'].isin([5,6]).astype(int)
# 周期性编码
df['sin_hour'] = np.sin(2 * np.pi * df['hour'] / 24)
df['cos_hour'] = np.cos(2 * np.pi * df['hour'] / 24)
# 删除异常
df = df[(df['temp'] > -50) & (df['temp'] < 50)]
df.to_parquet('data/weather_features.parquet', index=False)
print("Cleaned features saved.")
```
```python
### 模型训练 (weather_model.py)
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error
from xgboost import XGBRegressor
import joblib
# 读取特征数据
df = pd.read_parquet('data/weather_features.parquet')
# 目标和特征
target = 'temp'
features = [c for c in df.columns if c not in ['dt', 'weather_main', 'weather_desc', target]]
X = df[features]
y = df[target]
# 划分训练测试集
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, shuffle=False)
# 模型定义与训练
model = XGBRegressor(
objective='reg:squarederror',
n_estimators=100,
max_depth=5,
learning_rate=0.1,
tree_method='hist',
random_state=42
)
model.fit(X_train, y_train)
# 评估
y_pred = model.predict(X_test)
print("MAE:", mean_absolute_error(y_test, y_pred))
print("RMSE:", mean_squared_error(y_test, y_pred, squared=False))
# 保存模型
joblib.dump(model, 'models/weather_xgb.model')
print("Model saved.")
2.7 测试概述
系统测试就是对项目是否存在错误而运行程序的一种检测方式。系统测试对于一个软件来说极为重要,并且在开发过程中占有很大的比重。每一次功能的实现都伴随着很多次的测试。它是软件是否能用的检测环节,对于软件质量的评估有着重要影响。系统能否被验收成功是测试中最后一个至关重要的环节。
2.8软件测试原则
当进行软件测试时,有一些原则需要遵循,以确保测试的有效性和效率。
第一:测试应该尽早开始。在需求分析和系统设计阶段就应该进行测试准备,以便尽早发现系统的不足之处。这样可以降低修复成本,提高开发效率。测试人员应该在分析需求时就参与进来,确保需求具备可测试性和正确性。
第二:测试应该是全面的。测试应该覆盖软件的各个功能模块和不同的使用场景,以确保软件在各种情况下都能正常运行。测试还应该关注软件的性能、安全性和可用性等方面,以全面评估软件的质量。
随着软件开发的复杂性增加,手动测试已经无法满足需求。自动化测试可以提高测试的效率和准确性,减少人为错误。通过编写自动化测试脚本,可以快速执行大量的测试用例,并及时发现问题。软件的开发是一个迭代的过程,每个迭代都会引入新功能和修复旧问题。因此,测试也应该是一个持续的过程,与开发同步进行。持续集成和持续交付等技术可以帮助实现持续测试,确保软件在每个迭代中都能达到预期的质量标准。通过测试不仅仅是为了发现问题,更重要的是提供有价值的反馈给开发人员。测试人员应该及时向开发人员报告问题,并提供详细的复现步骤和环境信息,以便开发人员能够快速定位和解决问题。
2.9测试用例
(1)用户登陆测试用例
表 6-1 用户登录用例表
项目/软件 | 编制时间 | 20xx/xx/xx | ||||
功能模块名 | 用户登陆模块 | 用例编号 | xxxx | |||
功能特性 | 用户身份验证 | |||||
测试目的 | 验证是否输入合法的信息,允许合法登陆,阻止非法登陆 | |||||
测试数据 | 用户名=1密码=a1身份= 非认证用户 | |||||
操作步骤 | 操作描述 | 数 据 | 期望结果 | 实际结果 | 状态 | |
1 | 输入用户名和密码 | 用户名= 1密码=1 | 显示进入后的页面。 | 同期望结果。 | 正常 | |
2 | 输入用户名和密码 | 用户名= 1密码=aaa | 显示警告信息“不存在该用户名或密码错误!” | 同期望结果。 | 正常 | |
3 | 输入用户名和密码 | 用户名= aaa密码=1 | 显示警告信息“不存在该用户名或密码错误” | 同期望结果。 | 正常 | |
4 | 输入用户名和密码 | 用户名=“” 密码=“” | 显示警告信息“用户名密码不能为空!” | 同期望结果。 | 正常 | |
(2)用户注册测试用例
表 6-2 用户注册用例表
项目/软件 | 编制时间 | 20xx/xx/xx | |||||
功能模块名 | 用户注册模块 | 用例编号 | xxxx | ||||
功能特性 | 用户注册 | ||||||
测试目的 | 验证私注册是否成功,注册数据是否合法 | ||||||
测试数据 | 用户名=aaa 密码=aaa电子邮件=dwa@qq.com | ||||||
操作步骤 | 操作描述 | 数 据 | 期望结果 | 实际结果 | 测试状态 | ||
1 | 输入注册数据 | 用户名= aaa密码=aaa 电子邮件=dwa@qq.com | 提示:注册成功!转入用户主页 | 同期望结果。 | 正常 | ||
2 | 输入注册数据 | 用户名= aaa密码=aaa 电子邮件=dwa@qq.com | 提示:用户名已注册 | 同期望结果。 | 正常 | ||
3 | 输入注册数据 | 用户名= aaa密码=”” 电子邮件=dwa@qq.com | 提示:密码不能为空 | 同期望结果。 | 正常 | ||
4 | 输入注册数据 | 密码=aaa 电子邮件=dwa@qq.com | 提示:用户名为空 | 同期望结果。 | 正常 |



论文部分参考:
为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
我是程序员阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。
已经为上百名同学获得优秀毕业生!
源码获取
文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏