预训练-BERT
1.传统方法与预训练方法的比较
思想解读: 预训练的概念就和我们人读书和工作一样;先是通过基础教育到大学毕业,学习了通用的基础知识,这个做大多数工作,我们都能够快速学习和上手。模型预训练同样如此;避免了每一个下游任务都从零开始训练模型
由于语言模型不需要特别的标注数据,所以非常适合做预训练的目标。
2.预训练方式 --BERT
Mask Language Model (MLM)
2.1训练任务
1.完型填空
Bidirectional Language Model
a.依照一定概率,用[mask]掩盖文本
中的某个字或词
b.通过遮住词两侧的内容
,去预测
被遮住的词
2.句子关系预测
Next Sentence Prediction
[CLS] 师徒四人历经艰险[SEP] 取得真经[SEP] -> True
[CLS] 师徒四人历经艰险[SEP] 火烧赤壁[SEP] -> False
释义: 通过上下两句话,去训练模型去判断是否为上下句子关系,即一个二分类任务。但是目前大家普遍不太使用该训练任务,因为这个规律模型比较容易学习到。