某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不一定有直接的快速道路相连,只要互相间接通过快速路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建快速路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全地区畅通需要的最低成本。
输入格式:
输入的第一行给出村庄数目N (1≤N≤100);随后的N(N−1)/2行对应村庄间道路的成本及修建状态:每行给出4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态 — 1表示已建,0表示未建。
输出格式:
输出全省畅通需要的最低成本。
总体介绍prim算法和Kruskal算法:
prim算法:从图的节点上入手,先任意取一个节点,将其标记为已访问,并且将计算出其他节点到该点的“初始”距离,注意,将该节点到自己的距离赋值为0,这样一来就可以在刚开始时找出来距离选定的点(往后称其为源点)最近的点,找到后将该点再次设为已访问,注意,每一次找到一个新的点后,都要判断新的点的加入会不会对还未曾加入的点到已经加入的点的最短距离(也就是这里的最小花费)产生影响,比如原来2到1的花费是3,但是当以1为源点,假设下一步路径找到了4(也就是此时1->4是最短边),而4的加入恰好有(1->2的距离大于4->2的距离),所以此时就应该要(4->2)而不要1->2,然后找(节点数-1)次(因为n个节点构成树需要n-1条边);从这里可以看出,该算法的时间复杂度和节点个数有关,也就是该算法适用于节点数少,边多的情况