acwing 算法基础课4.2

欧拉函数 Euler  :phi[n]= 1~n中所有与他互质的数的个数

  • 先分解质因数  欧拉函数公式:
//欧拉函数
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		int a;
		cin>>a;
		int res =a;
		for(int i=2;i<=a/i;i++)
			if(a%i==0)
			{
				res=res/i*(i-1);
				while(a%i==0) a/=i; 
			}
		if(a>1) res = res/a*(a-1);
		cout<<res<<endl;
	}
	
	return 0;
 } 

筛法求1~n中所有数欧拉函数的总和(结合线性筛法求质数)

  • 质数欧拉函数的 euler[p]=p-1;
  • 非质数: if(i%primes[j])   euler[i*primes[j]]= primes[j] * euler[i];   else  euler[i*primes[j]]= (primes[j]-1)*euler[i];
    LL get_eulers(int n)
    {
        for(int i=2;i<=n;i++)
        {
            if(!st[i]) primes[cnt++]=i;phi[i]=i-1;
            for(int j=0;primes[j]<=n/i;j++)
            {
                st[primes[j]*i]=true;
                if(i%primes[j])  phi[i*primes[j]]=primes[j]*phi[i];break;
                phi[i*primes[j]]=(primes[j]-1)*ph[i];
    
            }
            
        LL res = 0;
        for(int i=0;i<=n;i++) res+=phi[i];
        return res;
    }

快速幂

  • 任何一个数都可以写成几个2^n 相加的形式,因为每个数都有二进制表示
    //a^k%q
    int qmi(int a,int k,int q)
    {
    int res =1;
        while(k)
        {
            if(k&1) res=(LL)res*a%q;
            k>>=1;
            a=(LL)a*a%q; 
        }
    return res;
    }

    快速幂求逆元: 条件 b和p互质

扩展欧几里得算法:(已知a,b;求满足的任意x,y)

//扩展欧几里得
int ex_gcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x =1,y=0;
		return a;	
	}else
	{
		int d= ex_gcd(b,a%b,y,x);
		y-=a/b*x;
		return d;	
	}	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值