使用Docker在Linux服务器本地部署PaddleSpeech Web服务

使用Docker在Linux服务器本地部署PaddleSpeech Web服务

一、本地化部署开源模型库PaddleSpeech

1. 从官方Docker Hub拉取环境

```bash
# GPU版本
docker pull paddlecloud/paddlespeech:develop-gpu-cuda10.2-cudnn7-latest
# CPU版本
docker pull paddlecloud/paddlespeech:develop-cpu-latest
```
更多版本:https://hub.docker.com/r/paddlecloud/paddlespeech/tags

2. 启动容器并分派端口

```bash
# GPU推理
docker run -v $PWD:/mnt -p 8888:8888 --gpus all -it 镜像名:标签名 /bin/bash
# CPU推理
docker run -v $PWD:/mnt -p 8888:8888 -it 镜像名:标签名 /bin/bash
```
其中8888为docker分配映射的端口。

3. 自然语言处理工具库NLTK安装

方法一:使用nltk自带的download()下载,由于国内网络问题,大概率失败。
	python # 进入python环境
	import nltk # 引入nltk包
	nltk.download()
方法二:从下载文件手动安装包。

链接:https://pan.baidu.com/s/1nQveCEAucFSNbuOAsrs6yw?pwd=yydh
提取码:yydh
从百度网盘下载nltk_data.zip

	python # 进入python环境
	import nltk 
	from nltk.book import *

你会得到这样的输出:
在这里插入图片描述
将文件夹中的nltk_data.zip放入以上任意一个路径后解压即可。
相关警告:

[nltk_data] Error loading averaged_perceptron_tagger: <urlopen error
[nltk_data]     [Errno 99] Cannot assign requested address>
[nltk_data] Error loading cmudict: <urlopen error [Errno 99] Cannot
[nltk_data]     assign requested address>

二、前后端环境部署

cd /home/PaddleSpeech/demos/speech_web

1. 后端环境安装

cd speech_server
pip install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
cd ..

2. 下载相关模型

只需手动下载语音指令所需模型即可,其他模型会自动下载。

cd speech_server
mkdir -p source/model
cd source/model
# 下载IE模型
wget https://bj.bcebos.com/paddlenlp/applications/speech-cmd-analysis/finetune/model_state.pdparams
cd ../../../

3. 更新paddlepaddle版本

# CPU版本
pip uninstall paddlepaddle
pip install paddlepaddle
# GPU版本
pip uninstall paddlepaddle-gpu
pip install paddlepaddle-gpu

4. 启动后端服务

cd speech_server
# 端口与启动容器时建立映射的端口一致
python main.py --port 8888

5. 通过nvm安装node.js

a. 安装nvm
git clone https://github.com/nvm-sh/nvm.git
bash install.sh
nvm 
# 此时若显示版本号,则安装成功,若显示Command 'nvm' not found,则关闭当前shell,重新连接即可。
sudo vi ~/.bashrc # 修改环境变量
# 在最后添加淘宝镜像
export NVM_NODEJS_ORG_MIRROR=https://npm.taobao.org/mirrors/node/
export NVM_IOJS_ORG_MIRROR=http://npm.taobao.org/mirrors/iojs
source ~/.profile # 让配置生效
b. 安装node
nvm install stable # 安装最新稳定版node

6. 前端环境安装(在你要启动前端服务的设备上安装)

推荐在Windows系统使用Vscode安装

# 拉取客户端代码,不会用git可以点进这个连接手动下载
git clone https://github.com/PaddlePaddle/PaddleSpeech/demos/speech_web/web_client.git
cd web_client # 进入前端目录(若在另一台设备上开启前端服务,只需要web_client文件夹)
npm install -g yarn # 使用yarn安装前端依赖
yarn install

7. 修改前端的后端配置文件(若在服务器本机运行前端则不需要)

a. 修改第一个文件./web_client/vite.config.js
server: {
    host: "0.0.0.0",
    proxy: {
      "/api": {
        target: "http://localhost:8010",  // 这里改成后端所在接口
        changeOrigin: true,
        rewrite: (path) => path.replace(/^\/api/, ""),
      },
},
}
b. 修改第二个文件./web_client/src/api/API.js
// websocket (这里改成后端所在的接口)
CHAT_SOCKET_RECORD: 'ws://localhost:8010/ws/asr/offlineStream', // ChatBot websocket 接口
ASR_SOCKET_RECORD: 'ws://localhost:8010/ws/asr/onlineStream',  // Stream ASR 接口
TTS_SOCKET_RECORD: 'ws://localhost:8010/ws/tts/online', // Stream TTS 接口

8. 启动前端服务

cd web_client
yarn dev –port 8011
#自此可以访问前端网页服务

在这里插入图片描述

<think>好的,我需要帮助用户了解如何使用PaddleSpeechDocker镜像进行部署和构建。首先,我应该回顾用户提供的引用内容,看看里面有没有相关的步骤或者命令。 用户提供了三个引用。引用[1]提到运行Docker容器的命令,这应该和部署有关。命令是docker run -p 8888:8888 -it paddlecloud/paddlespeech:develop-cpu-fb4d25 /bin/bash,这说明可以直接使用现有的镜像启动容器。引用[2]提到了使用docker-compose启动服务,这可能是一个更复杂的部署方式,需要编写docker-compose文件。引用[3]则说明官方Docker镜像已经包含了Python3.8和PIP3,但需要安装GCC和调整numpy版本,这可能是在构建自定义镜像时需要注意的地方。 接下来,我需要整理这些信息,分步骤解释如何部署和构建镜像。对于部署部分,用户可能需要知道如何直接运行现有镜像以及使用docker-compose的方法。构建镜像的话,可能需要从Dockerfile开始,但用户提供的引用中没有直接提到Dockerfile的内容,但引用[3]提到了一些构建时的注意事项,比如安装GCC和调整numpy版本。因此,构建镜像可能需要基于官方镜像进行自定义,或者从源码构建。 需要注意的是,用户的问题有两个部分:使用Docker镜像的教程和如何构建镜像。所以回答需要覆盖这两个方面。在教程部分,可以分步骤说明运行容器和docker-compose的方式。在构建镜像部分,可能需要指导用户如何基于现有镜像进行调整,或者从源代码构建,但根据引用内容,可能更倾向于使用现有的镜像并进行配置,而不是从头构建。 另外,用户提供的示例中,系统级指令要求生成相关问题,所以最后需要列出相关问题。需要确保问题与PaddleSpeechDocker部署相关,比如优化配置、常见问题、结合其他工具使用等。 还需要检查是否有遗漏的步骤,例如是否需要下载特定的镜像,或者配置端口、卷挂载等。引用[1]中的命令映射了8888端口,可能需要说明这是Jupyter或其他服务的端口。引用[3]提到调整numpy版本,可能需要具体说明如何操作,比如在Dockerfile中运行pip install命令。 最后,确保回答符合格式要求,使用中文,正确使用LaTeX(虽然这个问题可能不太需要数学公式),结构清晰,分步骤说明,并在适当的地方添加引用标识。</think>以下是使用PaddleSpeech Docker镜像的详细指南,包含部署和构建方法: ### 一、直接使用官方镜像部署 1. **拉取预构建镜像** 执行命令下载官方CPU版本镜像: ```bash docker pull paddlecloud/paddlespeech:develop-cpu-fb4d25 ``` 2. **启动容器** 映射8888端口并进入交互模式: ```bash docker run -p 8888:8888 -it paddlecloud/paddlespeech:develop-cpu-fb4d25 /bin/bash ``` 该镜像已预装Python 3.8、PIP及核心依赖[^3] 3. **验证安装** 在容器内执行: ```bash paddlespeech help ``` ### 二、使用docker-compose部署 1. **编写配置文件** 创建`docker-compose-speech-server.yml`,内容包含: ```yaml version: '3' services: speech-server: image: paddlecloud/paddlespeech:develop-cpu-fb4d25 ports: - "8888:8888" tty: true ``` 2. **启动服务** 执行组合命令: ```bash docker-compose -f docker-compose-speech-server.yml up -d ``` ### 三、自定义镜像构建 1. **基础镜像选择** 推荐使用官方镜像作为基础: ```dockerfile FROM paddlecloud/paddlespeech:develop-cpu-fb4d25 ``` 2. **补充依赖安装** 在Dockerfile中添加: ```dockerfile RUN apt-get update && apt-get install -y gcc libsndfile1 RUN pip install numpy==1.21.6 # 解决部分依赖冲突问题[^3] ``` 3. **构建镜像** 执行构建命令: ```bash docker build -t my-paddlespeech:v1 . ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GeometryGEN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值