OpenAI发布GPT-4o mini,3.5从此退出历史舞台?

随着OpenAI在2024年7月18日正式发布GPT-4o Mini,无疑在科技界引发了一场新的风暴。这一创新不仅标志着GPT-3.5模型正式退出历史舞台,更预示着人工智能在自然语言处理领域迈入了一个全新的时代。

之前速度最快的模型一直是GPT3.5,随着后来的GPT-4o推出成为了最快。

尽管目前处于初步阶段,第三方测试结果显示GPT4o的响应速度堪称顶尖,这或许可以归因于其相对较小的模型规模。

  • GPT-4:传统模式
  • GPT-4o:适合复杂任务
  • GPT-4o mini:更快完成日常任务

GPT-3.5

自GPT-3.5诞生以来,它便以其强大的语言生成能力和广泛的应用场景赢得了全球用户的青睐。

GPT-3.5采用了与GPT-3相同的基本结构,即多层Transformer架构和自回归语言模型。不同之处在于,GPT-3.5使用了更加深层和更加宽的神经网络结构,并增加了更多的训练数据和更加丰富的预训练任务。

从辅助写作到智能问答,从聊天机器人到内容创作,GPT-3.5以其卓越的性能和灵活的应用方式,极大地推动了人工智能技术在各行各业的落地与应用。

然而,随着技术的不断进步和用户需求的日益多样化,GPT-3.5逐渐显露出其局限性,尤其是在成本效益和处理复杂任务的能力上。

GPT-4o Mini的崛起

在此背景下,OpenAI推出了全新的GPT-4o Mini模型,正式宣告了GPT-3.5时代的终结。

GPT-4o Mini作为一款小型但功能强大的AI模型,不仅继承了GPT系列模型的优良传统,更在多个方面实现了突破性进展。

首先,GPT-4o Mini在性能上实现了显著提升。在涉及文本和视觉的推理任务上,它超越了众多同类小型模型,甚至在部分基准测试中表现优异,如MMLU评测集上得分高达82%,远超GPT-3.5 Turbo及其他小型模型。

这一成绩的背后,是OpenAI在深度学习算法和大规模数据训练上的不断优化和突破。

其次,GPT-4o Mini在成本效益上更是具有巨大优势。其定价仅为每百万输入token 15美分,每百万输出token 60美分,比GPT-3.5 Turbo便宜超过60%。

这一价格优势使得更多开发者和小型企业能够轻松承担使用AI模型的成本,进一步推动了人工智能技术的普及和应用。

此外,GPT-4o Mini还具备多模态支持能力,能够处理图像、视频和音频等多种模态的数据。这一特性使其在处理复杂任务时更加游刃有余,为用户提供了更加丰富的交互方式和应用场景。

如何使用

官网:https://chatgpt.com

由于GPT在国内使用有限制,但国内也有较出色的模型,比如百度文心一言、Kimi以及智谱清言等等,可以按照自己需求使用。

如果更有需求的朋友们,可以使用国内的GPT:点击直接使用icon-default.png?t=N7T8http://363ai.cn

最后

GPT-4o Mini的发布,不仅是对GPT-3.5模型的全面超越,更是对人工智能领域的一次深刻变革。

它预示着人工智能将在更多领域发挥重要作用,推动社会经济的快速发展。然而,随着AI技术的不断进步和应用场景的日益扩大,我们也面临着诸多挑战和争议。

一方面,GPT-4o Mini的强大能力可能会被用于不正当的用途,如制造虚假新闻、进行网络欺诈等。

因此,我们需要建立更加完善的监管机制,确保AI技术的合法合规使用。

另一方面,我们也应关注AI算法的公正性和透明度问题,避免算法中存在的偏见和歧视对社会造成不良影响。

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值