所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution
。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
测试点4: 题目隐含条件是a和b不能相等,这样才算“一对”正整数。 而a和b相等时只有唯一整数解:a=b=1,所以控制b从2开始循环即可。
(感觉这属于题目描述不清晰)
#include <iostream>
#include <cmath> //pow()头文件
using namespace std;
int main(){
int a,b,m,n,cnt=0;
cin>>m>>n;
for(a=m;a<=n;a++){
int c=sqrt(pow(a,3)-pow(a-1,3));
if(pow(c,2)==pow(a,3)-pow(a-1,3))
for(b=2;b<=sqrt(c);b++)
if( c==pow(b,2)+pow(b-1,2) ){
cout<<a<<" "<<b<<endl;
cnt++;
}
}
if(cnt==0)
cout<<"No Solution";
return 0;
}