
扩散模型(diffusion model)
文章平均质量分 96
扩散模型(Diffusion Models)近年来在计算机视觉领域引起了广泛关注,尤其在图像生成和图像去噪任务中取得了显著的成果。本专栏以实战为线索,逐步深入开发扩散模型各个环节,掌握前端常用性能体验优化思路,打造完整前端工作流,提升工程化编码能力和思维能力。
喵了个AI
有专业的团队,承接各种项目(机器学习、深度学习、计算机视觉、java开发、毕业设计),求取数据集请私信博主“数据集”即可。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
扩散模型算法实战——可控图像编辑
COCO是一个广泛使用的图像数据集,包含80类物体的图像和标注信息,适用于图像生成和编辑任务。CelebA:CelebA是一个人脸图像数据集,包含超过20万张名人图像,适用于人脸编辑任务。ImageNet:ImageNet是一个大规模图像分类数据集,包含1000类物体的图像,适用于条件生成任务。LAION-5B:LAION-5B是一个大规模的文本-图像对数据集,适用于文本到图像生成任务。原创 2025-03-22 08:45:00 · 1118 阅读 · 2 评论 -
扩散模型算法实战——低分辨率图像超分辨率重建
在众多算法中,基于扩散模型的SRDiff算法在超分辨率重建任务中表现出了优异的性能。下面简要介绍该算法的基本原理。超分辨率重建算法的性能评估依赖于高质量的数据集。原创 2025-03-22 08:30:00 · 1641 阅读 · 0 评论 -
扩散模型算法实战——三维重建的应用
ShapeNet:包含超过5万个三维模型,适用于三维形状生成和重建任务。ScanNet:包含超过1500个扫描的三维场景,适用于三维场景重建任务。:包含多视角图像和对应的三维模型,适用于多视角三维重建任务。原创 2025-03-21 08:45:00 · 1073 阅读 · 2 评论 -
扩散模型算法实战——多模态生成
COCO数据集:包含超过20万张图像和对应的文本描述,适用于图像生成和文本生成任务。Flickr30k数据集:包含3万张图像和对应的文本描述,适用于图像生成和文本生成任务。原创 2025-03-21 08:30:00 · 818 阅读 · 0 评论 -
扩散模型算法实战——分子生成:从理论到药物发现革命
分子生成是人工智能驱动药物发现(AIDD)的核心技术,致力于通过深度学习自动设计具有特定性质的化合物分子。行业痛点传统药物发现平均耗时10-15年,成本超26亿美元化学空间规模达10^60,远超人类实验探索能力临床失败率高达90%(Nature Reviews Drug Discovery, 2023)技术演进第一代:基于规则的分子设计(如SMILES枚举)第二代:生成对抗网络(GANs)和变分自编码器(VAEs)第三代:扩散模型(Diffusion Models)主导的新范式突破性优势。原创 2025-03-20 08:15:00 · 2396 阅读 · 0 评论 -
扩散模型算法实战——医学图像生成
BraTS是一个用于脑肿瘤分割的医学图像数据集,包含多模态的MRI图像(T1、T2、T1ce、FLAIR)。IXI数据集包含来自健康受试者的MRI图像,适用于医学图像生成和重建任务。LUNA16是一个用于肺结节检测的CT图像数据集,适用于肺部医学图像生成任务。CheXpertCheXpert是一个大规模的胸部X光片数据集,适用于胸部医学图像生成任务。原创 2025-03-19 08:45:00 · 1221 阅读 · 11 评论 -
扩散模型算法实战——3D 形状生成
✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨3D 形状生成是计算机视觉和计算机图形学领域中的一个重要研究方向,旨在通过算法自动生成高质量的三维模型。随着深度学习技术的快速发展,尤其是生成模型的出现,3D 形状生成领域取得了显著的进展。扩散模型(Diffusion Models)作为一种新兴的生成模型,凭借其强大的生成能力和稳定性,逐渐成为 3D 形状生成领域的研究热点。本文将详细介绍扩散模型在 3D 形状原创 2025-03-19 08:30:00 · 1030 阅读 · 0 评论 -
扩散模型算法实战——图像超分辨率
DIV2K:DIV2K是一个高质量的图像超分辨率数据集,包含1000张高分辨率图像(800张训练图像,100张验证图像,100张测试图像)。Set5:Set5是一个小规模的图像超分辨率数据集,包含5张高分辨率图像。Set14:Set14是一个中等规模的图像超分辨率数据集,包含14张高分辨率图像。Urban100:Urban100是一个包含100张城市景观图像的数据集,适用于测试图像超分辨率算法在复杂场景下的性能。原创 2025-03-19 08:15:00 · 1475 阅读 · 0 评论 -
扩散模型算法实战——图像修复与编辑
✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨图像修复与编辑是计算机视觉领域中的一个重要研究方向,旨在通过算法自动修复受损图像或对图像进行编辑,以提升图像质量或实现特定的视觉效果。近年来,随着深度学习技术的快速发展,尤其是生成模型的出现,图像修复与编辑领域取得了显著的进展。扩散模型(Diffusion Models)作为一种新兴的生成模型,凭借其强大的生成能力和稳定性,逐渐成为图像修复与编辑领域的研究热点。原创 2025-03-19 08:00:00 · 914 阅读 · 0 评论 -
扩散模型算法实战——动画制作(主页有源码)
动画制作的数据集通常包括图像、视频和文本描述。:COCO数据集包含超过20万张图像和80个类别的标注,广泛用于图像生成和文本条件生成任务。:Kinetics-600是一个大规模视频数据集,包含60万段短视频片段和600个动作类别,适合视频生成任务。UCF101:UCF101是一个动作识别数据集,包含101个动作类别的1.3万段视频,适合视频生成和预测任务。:DALL·E数据集包含大量文本-图像对,适合文本到图像的生成任务。原创 2025-03-18 08:30:00 · 1005 阅读 · 0 评论 -
扩散模型算法实战——视频生成(主页有源码)
视频生成是计算机视觉和生成模型领域的一个重要研究方向,旨在通过算法生成连续、逼真的视频序列。影视制作:自动生成特效、补全缺失帧。虚拟现实:生成虚拟场景的动态内容。游戏开发:自动生成游戏中的动态背景或角色动作。自动驾驶:生成模拟驾驶场景以训练自动驾驶系统。传统的视频生成方法主要基于生成对抗网络(GANs)和变分自编码器(VAEs),但这些方法在处理长序列视频时往往面临模式崩溃、训练不稳定等问题。近年来,扩散模型(Diffusion Models)在生成任务中表现出色,逐渐成为视频生成领域的热门选择。原创 2025-03-18 08:15:00 · 1396 阅读 · 20 评论 -
扩散模型的具体应用——音乐生成(主页有源码)
在众多音乐生成算法中,Jukebox因其高质量的生成效果和灵活的建模能力备受关注。Jukebox结合了扩散模型和Transformer,能够生成高质量的多轨音乐。MAESTRO:包含约200小时的钢琴演奏数据,适用于钢琴音乐生成任务。:包含约17.6万个MIDI文件,适用于多轨音乐生成任务。NSynth:包含约30万个音符的音频数据,适用于音符级别的音乐生成任务。扩散模型在音乐生成领域展现了强大的潜力,Jukebox作为其中的代表算法,凭借其高质量的生成效果和灵活的建模能力,成为当前的主流方法。原创 2025-03-17 08:45:00 · 2045 阅读 · 9 评论 -
扩散模型的具体应用——语音生成(主页有源码)
在众多语音生成算法中,DiffWave因其高质量的生成效果和灵活的建模能力备受关注。DiffWave结合了扩散模型和深度神经网络,能够生成高质量的语音波形。LJ Speech:包含约13,100个语音片段,总时长约24小时。LibriTTS:包含约585小时的语音数据,适用于文本到语音生成任务。VCTK:包含约44小时的语音数据,包含多种口音和说话人。扩散模型在语音生成领域展现了强大的潜力,DiffWave作为其中的代表算法,凭借其高质量的生成效果和灵活的建模能力,成为当前的主流方法。原创 2025-03-17 08:30:00 · 875 阅读 · 0 评论 -
扩散模型的具体应用——视频插帧与修复(主页有源码)
在众多视频插帧与修复算法中,因其高质量的生成效果和灵活的建模能力备受关注。该算法结合了扩散模型和光流估计模型,能够生成高质量的中间帧。Vimeo-90K:包含约9万组视频帧,每组包含7帧连续的视频帧。DAVIS:包含约150个高质量视频序列,适用于视频修复任务。UCF101:包含约1.3万个视频片段,适用于视频插帧任务。原创 2025-03-17 08:15:00 · 1328 阅读 · 0 评论 -
扩散模型的具体应用——文本到图像生成(主页有源码)
在众多文本到图像生成算法中,因其高质量的生成效果和开源的特性备受关注。Stable Diffusion结合了扩散模型和CLIP文本编码器,能够根据文本描述生成高质量的图像。:包含约12万张图像,每张图像配有5条文本描述。:包含约1.1万张鸟类图像,每张图像配有10条文本描述。Flickr30k:包含约3.1万张图像,每张图像配有5条文本描述。扩散模型在文本到图像生成领域展现了强大的潜力,Stable Diffusion作为其中的代表算法,凭借其高质量的生成效果和灵活的生成能力,成为当前的主流方法。原创 2025-03-17 08:00:00 · 1080 阅读 · 0 评论 -
扩散模型(Diffusion Models)用于医学图像修复:开启精准医疗新篇章
如果你正在寻找一种生成模型来解决医学图像修复问题,我强烈推荐**扩散模型(Diffusion Models)**。与传统的生成模型(如变分自编码器和对抗生成网络)相比,扩散模型具有以下独特优势:1. **高质量的图像生成**:扩散模型能够生成细节丰富且逼真的图像,特别适合处理医学图像中复杂的纹理和结构。2. **强大的去噪能力**:其逐步生成机制非常适合去除医学图像中的噪声和伪影,例如低剂量CT图像的噪声去除或MRI图像运动伪影的修复。3. **训练稳定性**:扩散模型的训练目标明确原创 2025-01-04 22:01:40 · 2289 阅读 · 8 评论 -
扩散模型:从噪声中重建艺术——图片生成的革命性技术
在人工智能领域,生成模型一直是研究的热点。生成模型的目标是学习数据的分布,并基于此生成与真实数据相似的新样本。传统的生成模型如生成对抗网络(GAN)尽管在图像生成中取得了显著成果,但存在模式崩塌、不稳定性等问题。近年来,扩散模型(Diffusion Models)凭借其生成质量高、训练稳定等优势,成为图像生成领域的研究新方向。扩散模型的基本思想是通过一系列逐步添加噪声的过程,将数据分布转换为高斯分布;然后通过逆过程逐步去噪,从高斯分布中恢复出高质量的样本。其生成结果在图像清晰度和细节保真度上优于 GAN原创 2025-01-04 11:54:18 · 1484 阅读 · 2 评论 -
扩散模型(Diffusion Model)的核心优势和广泛的应用前景
扩散模型是一类基于概率扩散过程的生成模型,近年来在生成任务中(如图像生成)表现出非常强大的能力。以下是扩散模型的几大核心优势原创 2025-01-03 19:28:30 · 2344 阅读 · 9 评论 -
重现大脑视觉(扩散模型在人脑视觉重现上的应用)
扩散模型在人脑视觉重现中的应用展示了生成式 AI 和神经科学的结合潜力。通过将脑信号作为条件输入,扩散模型能够生成与人类视觉感知一致的图像。这一领域的研究不仅推动了脑机接口技术的发展,还为理解人类大脑如何处理视觉信息提供了新的工具。未来,随着模型效率的提升和数据规模的扩大,扩散模型在人脑视觉重现中的应用将更加广泛和深入。原创 2025-01-03 21:43:28 · 2352 阅读 · 7 评论 -
扩散模型(Diffusion Models)用于图像去噪:开启图像去噪模型新前沿
扩散模型(Diffusion Models)近年来在计算机视觉领域引起了广泛关注,尤其在图像生成和图像去噪任务中取得了显著的成果。扩散模型的核心思想来源于物理学中的扩散过程,通过逐步添加噪声并反向模拟去噪过程,最终恢复出清晰的图像。在图像去噪领域,扩散模型的表现优于传统方法,且具备生成性强、结构化处理能力等优点。本文将深入探讨扩散模型在图像去噪中的应用,介绍其基本原理,展示相应的代码示例,并与传统的去噪模型进行对比。原创 2025-01-05 10:39:19 · 4563 阅读 · 5 评论