20个Deepseek版本全解析,找到最适合你的那一款!

Deepseek官方一共发布了20个R1推理模型的版本,根据参数规模和参数精度,可以将这些模型分为三类:完整版(满血版)、蒸馏版和量化版。

“满血版”提供最高的性能,但需要强大的硬件支持;“蒸馏版”在性能和资源需求之间更能取得平衡;“量化版”则适合资源相对受限的场景,但也以牺牲部分精度为代价。

每个版本都有不同的部署成本和适应场景,所以选择部署哪个版本,需要根据具体的需求场景,灵活选择。

01 满血版

完整版(满血版 671B-FP16)

Deepseek R1官方完整版,也俗称满血版,是指具有6710亿参数,且参数精度为FP16的Deepseek R1大模型。“满血版”的模型没有经过任何精简或压缩,保留了全部的功能和性能。这个版本也是被大家广泛认可的版本。

然而,满血版也需要高配的硬件支持,部署成本和资源需求较高。

(其中部署成本为本地化部署实施的大概成本估算,仅供参考)

应用场景

    02 蒸馏版

    蒸馏版(1.5B - 70B)

    是通过知识蒸馏技术压缩大型模型得到的轻量级版本,参数范围从1.5B到70B,使得内存需求显著降低,并且推理效率也能明显提升。而且模型更易于部署,特别适用于硬件资源有限或对实时性要求较高的应用场景。

    Deepseek R1蒸馏版本主要基于Qwen 和 llama 模型。Qwen 和 llama 模型相当于“学生”模型,从老师“满血版”模型那里学习知识精华,积累到自己身上。

    应用场景

      03 量化版

      量化版(Q4 - Q8)

      量化版是通过降低模型参数精度来减少模型大小和加速推理。从FP16到INT8或INT4,这样每个参数占用的内存更少,计算更快,但可能会损失一些精度。比如从FP16量化到INT4,模型大小从1300GB减少到了404G。

      应用场景

         

         

         大模型&AI产品经理如何学习

        求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

        1.学习路线图

        第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

        第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

        第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

        第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

        第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

        第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

        第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


        2.视频教程

        网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

        (都打包成一块的了,不能一一展开,总共300多集)

        因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

        3.技术文档和电子书 

        这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



        4.LLM面试题和面经合集


        这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



        👉学会后的收获:👈
        • 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

        • 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

        • 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

        • 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

        1.AI大模型学习路线图
        2.100套AI大模型商业化落地方案
        3.100集大模型视频教程
        4.200本大模型PDF书籍
        5.LLM面试题合集
        6.AI产品经理资源合集***

        👉获取方式:
        😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

        ### DeepSeek-R1 介绍 DeepSeek-R1 是一种基于大型语言模型 (LLM) 的先进人工智能系统,专注于通过强化学习 (RL) 提升其推理能力和解决问题的能力[^4]。不同于传统的方法,DeepSeek-R1 不依赖于监督微调(SFT),而是直接利用强化学习来训练模型。这种创新的方式使得 DeepSeek-R1 能够探索复杂的思维链条(CoT), 并展现出自我验证、反思以及生成长逻辑链等功能。 ### 安装与使用方法 为了获取并部署 DeepSeek-R1, 用户需先克隆官方 GitHub 仓库: ```bash git clone https://github.com/deepseek-ai/DeepSeek-V3.git ``` 完成上述操作后,按照项目文档中的指导进行环境配置和必要的设置工作即可启动应用程序[^2]。 ### 功能特性详解 DeepSeek-R1 支持多种高级功能,包括但不限于: - **自动推理**:能够处理未见过的任务并通过试错机制找到解决方案。 - **持续改进**:随着更多数据输入不断优化性能表现。 - **复杂问题求解**:擅长构建多步骤思考路径以应对挑战性的难题。 这些特点使 DeepSeek 成为科研人员和技术开发者手中强有力的工具,在多个领域内具有广泛的应用前景。 ### 实际应用场景举例 尽管具体实例可能因版本更新而有所变化,但从现有资料来看,DeepSeek 已经被应用于金融数据分析等领域。然而需要注意的是,对于某些实时性强的信息查询(如新美元指数或企业财报),由于底层知识库可能存在时间上的局限性,因此可能会遇到一定的限制[^3]。
        评论
        添加红包

        请填写红包祝福语或标题

        红包个数最小为10个

        红包金额最低5元

        当前余额3.43前往充值 >
        需支付:10.00
        成就一亿技术人!
        领取后你会自动成为博主和红包主的粉丝 规则
        hope_wisdom
        发出的红包

        打赏作者

        程序员辣条

        你的鼓励将是我创作的最大动力

        ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
        扫码支付:¥1
        获取中
        扫码支付

        您的余额不足,请更换扫码支付或充值

        打赏作者

        实付
        使用余额支付
        点击重新获取
        扫码支付
        钱包余额 0

        抵扣说明:

        1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
        2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

        余额充值