Dijkstra算法

Dijkstra算法是用来求取单项图最短路径的算法

在生活中常用于路由算法、地图导航、交通规划等场景

Dijkstra最短路径是计算机科学中一个重要的图论算法,用于在图中找到从起始顶点到其他所有顶点的最短路径。

该算法基于贪心策略,逐步从起始顶点到其他顶点的最短路径。

具体实现步骤:

  1. 创建一个数组用来记录起始点(我们假设为点A),记录点A到其他节点的位置,初始化为无穷大。
  2. 创建一个数组用于记录节点是否已经被访问,同意初始化为false
  3. 假设起始点到自身的距离设为0
  4. 遍历该节点的所有邻居节点,更新起始点到邻居节点的距离。

最终得到起始点到其他所有节点的最短距离

在计算机中,图一般使用邻接表或者邻接矩阵的存储方式,图中的节点一般抽象成一个数字(即下表或者是索引)

Dijkstra算法可以看作是BFS算法的拓展,BFS常用于无权图的遍历,Dijkstra可以作用于加权的图(权一定是正数值)

根据上文所述 需要定义三个数组

二维数组 grapg[][]用来表示有向加权图,

一维数组 visited[] 表示节点是不是被访问过 定义为bool类型 初始化为false

一维数组 dist[] 表示从起点到顶点i的最短路径长度 初始化为无穷大 dist[start] = 0

1.从dist[]中找到当前未被标记的dist[i]的最小顶点u,更改visit[i]=true

2.遍历所有跟u相邻的顶点v,如果visited[v] = flase 如果从start到u再到v的路径长度小于dist[v],更新dist[v]=dist[u]+w(u,v),w(u,v)为边(u,v)的权值。

一直重复1和2步骤 直到所有顶点都已被标记

代码实现如下:

//
//  Created by 20654 on 24-9-24.
//  dijkstra算法
//

#include <stdio.h>
#include <stdbool.h>
#define size 1000 // 定义图的最大节点数
#define max 1000000000 // 定义最大值
int n, m, s, e; // 节点数, 有向线段数, 起点, 终点
int graph[size][size]; // 图的邻接矩阵
int dist[size]; // 起点到各点的最短距离
bool visited[size]; // 记录节点是否被访问过

// Dijkstra算法实现函数,通过起点计算到图中各节点的最短路径
void dijkstra(int s) {
    // 初始化距离和访问状态
    for (int i = 1; i <= n; i++) {
        dist[i] = graph[s][i];
        visited[i] = false;
    }

    // 遍历所有节点: 看看是否从起始点先经过i,再由i到终点权值会小一点
    for (int i = 1; i <= n; i++) {
        int min = max, u = -1;
        //遍历&比较 => 找到未访问节点中距离起点最近的节点
        for (int j = 1; j <= n; j++) {
            if (dist[j] < min && !visited[j]) {
                u = j;
                min = dist[j]; //可以用i=1的情况来理解,找到离原点最近的一个节点
            }
        }
        if (u == -1) return; // 若未找到可达节点,退出循环
        visited[u] = true; // 标记节点u为已访问

        // 更新起点到各节点的距离
        for (int v = 1; v <= n; v++) {
            //从起始点先到u再到v的路径 < 原先记录的从原点到v的路径  &&    u,v之间有通路
            if (dist[v] > dist[u] + graph[u][v] && !visited[v] && graph[u][v] != max) {
                //v尚未访问过
                dist[v] = dist[u] + graph[u][v];
            }
        }
    }
}

// 主程序入口函数,初始化图的信息,并调用Dijkstra算法
int main(void) {
    // 硬编码图的节点数,有向线段数,起点,终点
    n = 5; // 例如5个节点
    m = 7; // 例如7条有向线段
    s = 1; // 起点
    e = 5; // 终点

    // 初始化图的邻接矩阵
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j <= n; j++) {
            graph[i][j] = i == j ? 0 : max;
        }
    }
    // 手动设置有向线段的起点、终点和权重
    graph[1][2] = 10;
    graph[1][3] = 5;
    graph[1][4] = 9;
    graph[2][4] = 6;
    graph[2][5] = 8;
    graph[3][4] = 7;
    graph[4][5] = 7;


    dijkstra(s); // 调用Dijkstra算法求最短路径
    printf("最短的距离为: %d", dist[e]); // 输出起点到终点的最短距离
    return 0;
}

有向图如下

### Dijkstra算法简介 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,适用于带权重的有向图或无向图中的最短路径计算[^1]。该算法的核心思想是从起始节点出发,逐步扩展已知距离最小的未访问节点,并更新其邻居节点的距离。 --- ### Dijkstra算法实现 以下是基于优先队列优化版本的Dijkstra算法实现: #### Python代码示例 ```python import heapq def dijkstra(graph, start): # 初始化距离字典,默认值为无穷大 distances = {node: float('inf') for node in graph} distances[start] = 0 # 使用堆来存储待处理节点及其当前距离 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 如果当前距离大于记录的距离,则跳过此节点 if current_distance > distances[current_node]: continue # 遍历相邻节点并更新距离 for neighbor, weight in graph[current_node].items(): distance = current_distance + weight # 更新更短的距离 if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` 上述代码中,`graph` 是一个邻接表形式表示的加权图,其中键是节点名称,值是一个字典,描述与其相连的其他节点以及边的权重[^2]。 --- ### Dijkstra算法的应用场景 1. **网络路由协议** 在计算机网络中,路由器可以利用Dijkstra算法找到到达目标地址的最佳路径,从而提高数据传输效率[^3]。 2. **地图导航系统** 地图服务提供商(如Google Maps)通过Dijkstra算法或其他改进版算法快速计算两点之间的最短路径,提供给用户最佳行驶路线[^4]。 3. **社交网络分析** 社交网络中可以通过Dijkstra算法衡量两个用户的连接紧密程度,帮助推荐好友或者发现潜在的关系链[^5]。 4. **物流配送规划** 物流公司使用类似的最短路径算法优化货物运输线路,减少成本和时间消耗[^6]。 --- ### 示例说明 假设有一个简单的加权图如下所示: ```plaintext A --(1)-- B --(2)-- C | | | (4) (1) (3) | | | D -------- E ------- F (1) ``` 对应的Python输入格式为: ```python graph = { 'A': {'B': 1, 'D': 4}, 'B': {'A': 1, 'E': 1, 'C': 2}, 'C': {'B': 2, 'F': 3}, 'D': {'A': 4, 'E': 1}, 'E': {'D': 1, 'B': 1, 'F': 1}, 'F': {'E': 1, 'C': 3} } start_node = 'A' result = dijkstra(graph, start_node) print(result) ``` 运行结果将是各节点到起点 `A` 的最短路径长度: ```plaintext {'A': 0, 'B': 1, 'C': 3, 'D': 4, 'E': 2, 'F': 3} ``` 这表明从节点 A 到其余各个节点的最短路径分别为:B 距离为 1;C 距离为 3;等等[^7]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

About_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值