Python超市电商数据分析(三)
接上篇 Python超市电商数据分析(二)
数据源概况:
本案例将对某大型超市的零售数据进行数据分析,通过了
解运营状况,做出合理的决策。详细字段是:
Row ID:行编号;
Order ID:订单ID;
Order Date:订单日期;
Ship Date:发货日期;
Ship Mode:发货模式;
Customer ID:客户ID;
Customer Name:客户姓名;
Segment:客户类别;
City:客户所在城市;
State:客户城市所在州;
Country:客户所在国家;
Postal Code:邮编;
Market:商店所属区域;
Region:商店所属州;
Product ID:产品ID;
Category:产品类别;
Sub-Category:产品子类别;
Product Name:产品名称;
Sales:销售额;
Quantity:销售量;
Discount:折扣;
Profit:利润;
Shipping Cost:发货成本;
Order Priority:订单优先级;
用户价值度RFM模型分析
RFM是一个经典的客户分群模型,含义如下:
R——Recency:客户最近一次消费时间
F——Frequency:客户消费的频次
M——Monetary:消费金额
客户价值类型:
重要价值客户:RFM3个值都很高,是平台重点维护的客户
重要保持客户:最近一次消费时间较远,消费金额和消费频
次比较高
重要发展客户:最近有消费,且整体消费金额高,但是购买
不频繁
重要挽留客户:消费金额较高,消费频次偏低,而且已经很
久没有消费行为了
一般价值客户:多次频繁购买,但是购买的商品