Chat Elements构建聊天界面
# 1. 导入streamlit模块
import streamlit as st
# 2. 给界面添加一个侧边栏(导航)
with st.sidebar:
st.write('请输入Tongyi的API Key:')
api_key = st.text_input('', type='password')
# 3. 内容区设计
st.markdown('### 通义聊天机器人')
st.divider()
# 4. 设计一个文本输入框,获取用户的prompt
prompt = st.chat_input("请输入您的问题:")
# 用户信息
with st.chat_message("user"):
st.write("Hello")
# 机器人信息
message = st.chat_message("assistant")
message.write("Hello human")
LangChain框架概述和组成
下载对应Python模块
pip install langchain -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install langchain-community -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install dashscope -i https://pypi.tuna.tsinghua.edu.cn/simple
配置Path环境变量
案例_文本扩写案例
# 1. 导入Tongyi模型
from langchain_community.llms import Tongyi
# 2. 定义一个prompt提示词
prompt = "从前有座山,山里有座庙"
# 3. 实例化Tongyi模型
llm = Tongyi(
model = "qwen-max",
# 如果配置了Path环境变量, 可以省略不写 dashscope_api_key, Mac本如果出问题, 可以把参数写为: api_key
dashscope_api_key = "sk-68130f72b3144e2f886ab07660a212b4"
)
# 4. 发送请求
result = llm.invoke(prompt)
# 5. 返回最终结果
print(f"提示词:{prompt}")
print(f"最终结果:{result}")
案例_代码生成案例
# 1. 导入相关包.
from langchain_community.llms import Tongyi
# 2. 初始化模型.
llm = Tongyi(
model = 'qwen-max'
)
# 3.定义提示词.
prompt = """
请为一下功能生成一段Python代码: 求两个数的最大公约数
"""
# 4. 调用模型生成代码.
result = llm.invoke(prompt)
# 5. 打印结果.
print(result)
遇到问题后的解决方案
首先要在配置完Path环境变量后,立马***重启PyCharm!!!***最好可以重启电脑。如果没有配置环境Path的话可以将用于接受的dashscope_api_key的变量名改为api_key。亲测有效