Acwing 2. 01背包问题
** 仅做复习与记录 使用 **
建议观看视频后阅读。
题目描述
有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。
第 i件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
思路
通过一个数组 f[i][j] 来代表在判断在对前面i个物体选取对应容量 j 之下的最大的价值。(即前面的最优解,从i个物体选出体积在j之下的价值最大解)。
则 如果物体 f[i][j] 和 f[i-1][j-v[i]] + w[i] 大小来代表是否选择这个物体,如果 f[i][j]大 就在 j 容量时不拿这个物体。
即 : f[i][j] = max(f[i][j],f[i-1][j-v[i]+w[i])
代码
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
const int N =1010;
int f[N][N],v[N],w[N];
int main()
{
cin>>n>>m;
for(int i = 1; i <= n ; ++ i) cin>>v[i]>>w[i];
for(int i = 1; i <= n ; ++ i)
for(int j = v[i]; j <= m ; ++ j)
{
f[i][j] = f[i-1][j];
if([j > v[i]])
f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
}
cout<<f[n][m];
return 0;
}
优化思路
观察f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
我们可以发现我们只用前一个状态转移过来,也就是说不需要二维数组,只需要滚动数组。
利用原先的数组 f[i][j] -> 可以直接推出下一组的情况,只需要在原先容量下判断加入物体是否会增大价值。
即:对于物品 i :f[j] 代表了在前面 i-1 个物品下各种容量的最大价值,如果f[j-v[i]] +W[i] > f[j] 就可以选取了。
代码就变成了 if(j> v[i] && f[j-v[i]] + w[i] > f[j]) f[j]=f[j-v[i]]+w[i]; 因为在体积小于j时没有任何动作。
那么直接保证j大于等于 v[i] 即可。代码大概就是个这样 :
for(int i = 1 ; i <= n; ++ i)
for(int j =v[i] ; j <= m ++ j )
if(f[j] < f[j-v[i]] +W[i]) f[j] = f[j-v[i]]+w[i];
但是这样还会存在问题 : 同一个物体会被选取若干次。 假如 4 个物体 , 容量是 10
体积v: 1 2 3 4 5 对应 价值w 5 5 5 5 5
那么在第一个循环中 因为在 v = 1 求出来了f[1] = 5 ;
那么当 j = 2 时 f[2] < f[2 - v[1]] + w[i] ; f[2] 就会更新为 10,这显然不行。
那么我们可以从大到小循环就完美解决了问题
只需要将 j 从 m 开始到 v[i] 结束。
优化代码:
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
const int N =1010;
int f[N][N],v[N],w[N];
int main()
{
cin>>n>>m;
for(int i = 1; i <= n ; ++ i) cin>>v[i]>>w[i];
for(int i = 1; i <= n ; ++ i)
for(int j = 1; j <= m ; ++ j)
{
f[i][j] = f[i-1][j];
if(j >= v[i])
f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
cout<<f[n][m];
return 0;
}
= max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
cout<<f[n][m];
return 0;
}