01背包问题

本文详细解析了01背包问题的解决方法,包括基本概念、动态规划思路及优化技巧,并附带完整代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Acwing 2. 01背包问题

** 仅做复习与记录 使用 **
建议观看视频后阅读。

题目描述

有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。
第 i件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000

0<vi,wi≤1000

思路

通过一个数组 f[i][j] 来代表在判断在对前面i个物体选取对应容量 j 之下的最大的价值。(即前面的最优解,从i个物体选出体积在j之下的价值最大解)。
则 如果物体 f[i][j] 和 f[i-1][j-v[i]] + w[i] 大小来代表是否选择这个物体,如果 f[i][j]大 就在 j 容量时不拿这个物体。
即 : f[i][j] = max(f[i][j],f[i-1][j-v[i]+w[i])

代码

#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
const int N =1010;
int f[N][N],v[N],w[N];
int main()
{
    cin>>n>>m;
    for(int i = 1; i <= n ; ++ i) cin>>v[i]>>w[i];
    for(int i = 1; i <= n ; ++ i)
        for(int j = v[i]; j <= m ; ++ j)
        {
            f[i][j] = f[i-1][j]; 
            if([j > v[i]])
        f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
        }
        cout<<f[n][m];
    return 0;
}

优化思路

观察f[i][j] = max(f[i-1][j],f[i-1][j-v[i]]+w[i]);
我们可以发现我们只用前一个状态转移过来,也就是说不需要二维数组,只需要滚动数组。
利用原先的数组 f[i][j] -> 可以直接推出下一组的情况,只需要在原先容量下判断加入物体是否会增大价值。
即:对于物品 i :f[j] 代表了在前面 i-1 个物品下各种容量的最大价值,如果f[j-v[i]] +W[i] > f[j] 就可以选取了。
代码就变成了 if(j> v[i] && f[j-v[i]] + w[i] > f[j]) f[j]=f[j-v[i]]+w[i]; 因为在体积小于j时没有任何动作。
那么直接保证j大于等于 v[i] 即可。代码大概就是个这样 :

for(int i = 1 ; i <= n; ++ i)
 for(int j =v[i] ; j <= m ++ j )
    if(f[j] <  f[j-v[i]] +W[i]) f[j] = f[j-v[i]]+w[i];

但是这样还会存在问题 : 同一个物体会被选取若干次。 假如 4 个物体 , 容量是 10
体积v: 1 2 3 4 5 对应 价值w 5 5 5 5 5
那么在第一个循环中 因为在 v = 1 求出来了f[1] = 5 ;
那么当 j = 2 时 f[2] < f[2 - v[1]] + w[i] ; f[2] 就会更新为 10,这显然不行。
那么我们可以从大到小循环就完美解决了问题
只需要将 j 从 m 开始到 v[i] 结束。

优化代码:

#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
const int N =1010;
int f[N][N],v[N],w[N];
int main()
{
    cin>>n>>m;
    for(int i = 1; i <= n ; ++ i) cin>>v[i]>>w[i];
    for(int i = 1; i <= n ; ++ i)
        for(int j = 1; j <= m ; ++ j)
        {
         f[i][j] = f[i-1][j];
         if(j >= v[i])
         f[i][j] = max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
        cout<<f[n][m];
    return 0;
}
= max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
        cout<<f[n][m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值