bellman-ford算法 Acwing 853. 有边数限制的最短路

博客介绍了如何利用Bellman-Ford算法解决Acwing 853题目的问题,该题目涉及一个含有负权边的有向图,要求求出从1号点到n号点最多经过k条边的最短路径。由于存在负权边,Dijkstra算法不适用,而Bellman-Ford算法能处理这种情况。文章提供了算法思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Acwing 853. 有边数限制的最短路

题目描述

给定一个 n 个点 m
条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。

输入格式

第一行包含三个整数 n,m,k。

接下来 m
行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k
条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。

数据范围

1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。

思路

因为存在负环,那么用Dijkstra算法不能解决这个问题。
因为负环我们可以不断的遍历这个负环我们就能让距离不断变短。
所以加上步数的限制就保证了即使存在负环我们也可以求出最短路。
Bellman Ford算法:每一步都是遍历所有的边,并且拿上一步的距离来更新。
这样每一步就是相当于只在这个图里面走了一步。每次遍历完所有边都备份好。这样下一步就是在这一步的基础上走一步了。否则就会一次走两步甚至更多步。

代码

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std ;
int n,m,k;
const int N = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值