Acwing 853. 有边数限制的最短路
题目描述
给定一个 n 个点 m
条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从 1号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible。
输入格式
第一行包含三个整数 n,m,k。
接下来 m
行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
点的编号为 1∼n。
输出格式
输出一个整数,表示从 1 号点到 n 号点的最多经过 k
条边的最短距离。
如果不存在满足条件的路径,则输出 impossible。
数据范围
1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。
思路
因为存在负环,那么用Dijkstra算法不能解决这个问题。
因为负环我们可以不断的遍历这个负环我们就能让距离不断变短。
所以加上步数的限制就保证了即使存在负环我们也可以求出最短路。
Bellman Ford算法:每一步都是遍历所有的边,并且拿上一步的距离来更新。
这样每一步就是相当于只在这个图里面走了一步。每次遍历完所有边都备份好。这样下一步就是在这一步的基础上走一步了。否则就会一次走两步甚至更多步。
代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std ;
int n,m,k;
const int N =