yolov5+opencv+java:通过DJL在maven项目中使用yolov5的小demo

本篇博客详细介绍了如何在Java中使用Deep Java Library (DJL) 调用Yolov5s模型进行对象检测,并结合OpenCV进行图像处理。首先,导出Yolov5s的torchscript模型,然后创建一个Maven项目,配置pom.xml引入DJL和OpenCV依赖。接着,下载并配置OpenCV的库文件,将模型权重放入资源文件。最后,编写代码运行程序,实现了从图片到检测结果的完整流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

这篇博客主要是介绍如何通过djl在java中调用yolov5进行推理,顺便也学习了一下在java上的opencv api。
Deep Java Library是由亚马逊(Amazon)提供的一个深度学习工具包,能够让java开发者在java上调用目前主流的深度学习框架,像pytorch、tensorflow、mxnet、paddlepaddle(飞桨居然也有份??),也包括onnx格式的模型。

环境

导出yolov5s模型

这次demo就直接使用yolov5s的预训练模型。yolov5项目本身就自带了非常完善的模型导出脚本,yolov5的5.0发行版也比之前的版本完善很多。
yolov5的模型导出脚本是models/export.py文件,
在这里插入图片描述
导出之前需要设置一下

  • 权重文件的位置
  • 输入图片的尺寸
  • 是否要输出bbox
  • 模型所在设备
    在这里插入图片描述
    上图红色的框按我的进行设置就行了,绿色的框根据自己的情况进行设置。
    设置好以后运行代码就可以在和权重文件相同的位置找到生成的torchscript模型权重。
    在这里插入图片描述

编写Maven项目

编写pom.xml文件

<
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值