- 博客(33)
- 收藏
- 关注
原创 论文阅读《MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits》——全文阅读
为了减少开发开销并实现任何给定生成式 AI 应用程序的潜在组件之间的无缝集成,最近发布了模型上下文协议 (MCP),随后被广泛采用。MCP 是一种开放协议,它标准化了对大型语言模型 (LLM)、数据源和代理工具的 API 调用。因此,通过连接多个 MCP 服务器——每个服务器都定义了一组工具、资源和提示——用户能够定义完全由 LLM 驱动的自动化工作流。然而,我们发现当前的 MCP 设计对最终用户存在广泛的潜在安全风险。特别是,我们发现。
2025-04-25 11:36:34
1207
1
原创 论文阅读《MCP-Solver: Integrating Language Models with Constraint Programming Systems》——全文阅读
MCP Solver 通过模型上下文协议 (MCP) 将大型语言模型 (LLMs) 与符号求解器连接起来,这是一种用于 AI 系统集成的开源标准。为 LLMs 提供形式化求解和推理能力可以解决它们的关键缺陷,同时利用它们的优势。我们的实现提供了约束编程 (Minizinc)、命题可满足性 (PySAT) 和 SAT 模块理论 (Python Z3) 的接口。该系统采用迭代验证的编辑方法,以确保在修改过程中模型的一致性,并支持结构化细化。
2025-04-23 21:08:17
729
1
原创 论文阅读《MCP-Solver: Integrating Language Models with Constraint Programming Systems》
但确实通过 SMT 验证了某种。
2025-04-21 21:35:01
597
1
原创 论文阅读《MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits》
提出一个自动化工具。
2025-04-21 21:34:04
886
1
原创 论文阅读《Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions》(1)
表1. MCP生态系统采用概述。表1展示了MCP如何在不同领域获得显著的吸引力,这表明它在实现无缝AI-to-tool交互方面的重要性日益增加。这一趋势表明,人们正在转向将MCP嵌入到开发人员环境中,以提高生产力并减少手动集成工作。MCP 有望成为人工智能驱动工作流程的关键推动者,推动跨行业的更安全、可扩展和高效的 AI 生态系统。
2025-04-21 21:32:13
1080
原创 论文阅读《Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions》——大纲
论文阅读:模型上下文协议 (MCP):景观、安全威胁和未来研究方向
2025-04-20 15:25:25
871
原创 论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》(3)——课程学习
课程是一个通用概念,它既包括组织过去经验的时间表,也包括通过任务训练获得经验的时间表。。Curriculum(课程)被定义为一个四元组:边的含义:路径终止:图3:先前工作中的课程结构示例。(a) 网格世界域中的线性序列(Narvekar等人,2017年)(b) 块状人的有向无环图(Svetlik等人,2017年)。单任务课程是课程C,其中考虑提取样本的任务集的基数|T | = 1,并且仅由目标任务mt组成。单任务课程本质上考虑如何最好地组织和训练从单个任务中获得的经验。
2025-04-09 20:28:53
996
1
原创 论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》(3)——Background
###紧接上文的大纲和摘要,现在正式进入survey的第一部分——background在本节中,我们提供了强化学习 (RL) 和迁移学习 (TL) 的背景。强化学习考虑的是代理如何在一段时间内在其环境中行动,以便最大化某些标量奖励信号。我们可以将代理与其环境的交互(也称为任务)形式化为马尔可夫决策过程 (MDP)本文主要考虑:episodic MDPs翻译为:Episodic MDP 是一种任务被**划分为多个“情节”**的马尔可夫决策过程;每一情节从 Δs0 采样得到初始状态;在与环境交互若干步后,过
2025-04-08 09:16:05
686
1
原创 Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey 阅读(2)——大纲介绍
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey 阅读(2)
2025-04-07 20:52:45
707
原创 论文阅读《Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey》
这篇论文提出了课程学习(CL)在强化学习(RL)中的重要性,并详细讨论了其框架、挑战及解决方案。通过提出自适应的任务排序方法、任务迁移技巧和多任务训练方法,论文展示了 CL 如何有效提升 RL 代理的学习效率和泛化能力。同时,论文也指出了当前 CL 方法的局限性,并为未来的研究方向提供了宝贵的建议。
2025-04-01 21:29:31
1178
1
原创 论文阅读<A Survey of Curriculum Learning in Deep Reinforcement Learning>——如何在深度强化学习中引入课程学习以提升训练效率
论文阅读<A Survey of Curriculum Learning in Deep Reinforcement Learning>
2025-04-01 21:22:30
633
1
原创 论文阅读《Proximal Curriculum for Reinforcement Learning Agents》——提升智能体学习速度的
老规矩,今天是使用Gemini2.5pro来生成的模板。
2025-03-31 14:49:11
977
1
原创 论文阅读:Human Decision Makings on Curriculum Reinforcement Learning with Difficulty Adjustment
以人为本的人工智能考虑的是人类对人工智能性能的体验。虽然已有大量研究通过全自动学习或弱监督学习帮助人工智能实现超人性能,但较少有人尝试人工智能如何在细粒度输入的情况下根据人类偏好的技能水平进行定制。在这项工作中,我们通过学习人类的决策过程,引导课程强化学习结果达到既不太难也不太容易的首选性能水平。为此,我们开发了一个便携式交互平台,用户可以通过操作任务难度、观察表现和提供课程反馈与代理进行在线交互。我们的系统具有高度可并行性,使人类在没有服务器的情况下训练需要数百万样本的大规模强化学习应用成为可能。
2025-03-28 16:35:49
970
1
原创 Python报错requests.exceptions.ChunkedEncodingError: Response ended prematurely
Python报错修改
2025-03-20 13:28:47
849
原创 Post-Training Quantization, PTQ
Post-Training Quantization(PTQ) 是 模型训练完成后,对其参数(权重 & 激活值)进行量化 的方法,目的是 减少存储占用 & 提高推理速度,同时尽可能保持模型精度。相比于 量化感知训练(Quantization-Aware Training, QAT),PTQ 不需要重新训练模型,而是 直接对训练好的模型进行量化转换,适用于 推理优化。现代深度学习模型(如 Transformer、CNN)通常采用 FP32(32-bit 浮点数) 存储权重和计算数据,这会带来以下问题:✨ PT
2025-03-19 22:26:23
431
原创 A Comprehensive Evaluation of Quantization Strategies for Large Language Models全面评估大型语言模型的量化策略论文阅读
A Comprehensive Evaluation of Quantization Strategies for Large Language Models全面评估大型语言模型的量化策略论文阅读——————大模型量化的一个小综述
2025-03-18 21:47:11
1571
3
原创 VisFlow: Adaptive Content-Aware Video Analytics on Collaborative Cameras论文阅读
VisFlow: Adaptive Content-Aware Video Analytics on Collaborative Cameras论文阅读
2025-03-12 15:17:08
522
1
原创 AdaStreamer: Machine-Centric High-Accuracy Multi-Video Analytics with Adaptive Neural Codecs论文阅读
AdaStreamer: Machine-Centric High-Accuracy Multi-Video Analytics with Adaptive Neural Codecs论文阅读
2025-03-12 15:16:36
952
1
原创 Langgraph 使用排错 AttributeError: ‘OllamaLLM‘ object has no attribute ‘bind_tools‘
解决AttributeError: ‘OllamaLLM‘ object has no attribute ‘bind_tools‘问题
2025-02-24 20:23:58
752
原创 论文阅读《Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-To-Image Mod》
大模型安全论文阅读——CCS 2023《Unsafe Diffusion: On the Generation of Unsafe Images and Hateful Memes From Text-To-Image Mod》不安全扩散:关于从Text-To-Image Model生成不安全图像和仇恨模因
2024-12-01 21:48:04
1197
1
原创 解决问题AttributeError: module ‘numpy‘ has no attribute ‘int0‘. Did you mean: ‘int8‘?
在使用numpy对opencv 的matlike类型的数据进行整数化时,有报错AttributeError: module 'numpy' has no attribute 'int0'. Did you mean: 'int8'。解决方法:将int0改为int64即可,是由于numpy的版本升级int0,int8已不再使用。
2024-11-06 13:15:10
1147
原创 大语言模型学习第八讲之大语言模型评估(8.4&8.5)
阅读《大规模语言模型——从理论到实战》的第八章的8.4,即第八章的最后一章,对其知识点进行提炼和简单概述,粗略阅读,以及对第八章整体进行简单的总结
2024-10-23 23:10:39
1350
原创 大语言模型学习第八讲之大语言模型评估(8.3)
阅读《大规模语言模型——从理论到实战》的第八章的8.3,对其知识点进行提炼和简单概述,粗略阅读,此部分是第八章的重点章节
2024-10-20 22:23:43
1972
1
原创 大语言模型学习第八讲之大语言模型评估(8.1&8.2)
阅读《大规模语言模型——从理论到实战》的第八章的8.1及8.2,对其知识点进行提炼和简单概述,粗略阅读
2024-10-18 22:56:03
1066
原创 语义通信Semantic Communications Overview, Open Issues, and Future Research Directions综述阅读
语义通信的核心综述阅读Semantic Communications: Overview, Open Issues, and Future Research Directions
2024-10-15 22:51:29
2537
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人