PyTorch 快速入门

我们将通过一个简单的示例,快速了解如何使用 PyTorch 进行机器学习任务。PyTorch 是一个开源的机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:

一、数据处理

PyTorch 提供了两个基本的数据处理工具:torch.utils.data.DataLoadertorch.utils.data.DatasetDataset 用于存储样本及其对应的标签,而 DataLoader 则为 Dataset 提供了一个可迭代的包装器。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

PyTorch 还提供了许多特定领域的库,如 TorchText、TorchVision 和 TorchAudio,这些库中都包含了各种数据集。在本教程中,我们将使用 TorchVision 中的 FashionMNIST 数据集。每个 TorchVision Dataset 都包含两个参数:transformtarget_transform,分别用于修改样本和标签。

# 下载 FashionMNIST 数据集
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

我们将 Dataset 作为参数传递给 DataLoaderDataLoader 为我们的数据集提供了一个可迭代的包装器,并支持自动批处理、采样、洗牌和多进程数据加载。在这里,我们定义了一个大小为 64 的批次,即数据加载器可迭代对象的每个元素将返回一个包含 64 个特征和标签的批次。

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

二、创建模型

在 PyTorch 中,我们通过创建一个继承自 nn.Module 的类来定义神经网络。我们在 __init__ 函数中定义网络的层,并在 forward 函数中指定数据如何通过网络传递

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值