激光slam基础入门笔记2——位姿表示与变换矩阵

该文介绍了如何使用C++和Eigen库来实现二维空间中的位姿表示和坐标变换。通过建立转换矩阵,计算了机器人A相对于机器人B的坐标,并给出了具体的代码示例及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

初步了解位置与位姿:

参考链接:机器人学——1.0-位置与姿态概述_「已注销」的博客-CSDN博客_位置和姿态

 二维空间位姿表示与变换矩阵推导:

参考链接:机器人学——1.1-二维空间位姿描述_「已注销」的博客-CSDN博客

深蓝学院参考:

 

C++简单实现相对位姿转换

#include <iostream>
#include<Eigen/Dense>
using namespace std;
using namespace Eigen;
int main(int argc, char** argv)
{
    // 机器人B在坐标系O中的坐标:
    Vector3d B(3, 4, M_PI);

    // 坐标系B到坐标O的转换矩阵:
    Matrix3d TOB;
    TOB << cos(B(2)), -sin(B(2)), B(0),
           sin(B(2)),  cos(B(2)), B(1),
              0,          0,        1;

    // 坐标系O到坐标B的转换矩阵:
    Matrix3d TBO = TOB.inverse();

    // 机器人A在坐标系O中的坐标:
    Vector3d A(1, 3, -M_PI / 2);

    // 求机器人A在机器人B中的坐标:
    Vector3d BA;
    Matrix3d TOA;
    TOA << cos(A(2)), -sin(A(2)), A(0),
           sin(A(2)),  cos(A(2)), A(1),
              0,          0,        1;
    Matrix3d TBA = TBO * TOA;
    cout << TBA << endl;
    BA << TBA(0, 2),
    TBA(1, 2),
    atan2(TBA(1, 0), TBA(0, 0));
    cout << "Your answer is BA: " << BA.transpose() << endl;
    return 0;
}

运行结果:

[Running] cd "/home/lxy/project/Eigen/" && g++ demo01.cpp -o demo01 && "/home/lxy/project/Eigen/"demo01
-1.83697e-16           -1            2
           1 -1.83697e-16            1
           0            0            1
Your answer is BA:      2      1 1.5708

[Done] exited with code=0 in 7.399 seconds

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值