1. 引言
印刷电路板(PCB)是现代电子设备中的关键组成部分。PCB的质量直接影响到电子产品的性能和可靠性。因此,PCB的缺陷检测在生产过程中至关重要。传统的PCB缺陷检测方法依赖人工视觉和简单的图像处理算法,准确性和效率难以满足生产需求。近年来,深度学习技术在计算机视觉领域取得了显著进展,尤其是YOLO(You Only Look Once)模型在目标检测任务中的广泛应用,为PCB缺陷检测提供了强大的支持。
YOLOv11作为YOLO系列的最新版本,在检测精度、速度以及应用灵活性等方面进行了诸多优化,极大提高了目标检测的效率和准确性。本文将详细介绍如何基于YOLOv11实现一个PCB板缺陷检测系统,并通过PySide6设计一个简洁直观的图形用户界面(GUI)来展示缺陷检测的结果。文章还将提供完整的训练代码、PySide6界面代码,以及参考数据集,帮助读者快速实现一个功能完备的PCB缺陷检测系统。
2. 项目概述
2.1 目标
本项目的目标是使用YOLOv11模型实现一个PCB板缺陷检测系统,具体包括:
- PCB缺陷数据集准备:使用公开的PCB缺陷数据集并进行数据预处理,以适应YOLOv11模型的训练。
- YOLOv11模型训练与优化:基于数据集训练YOLOv11模型,识别PCB板上的缺陷,如开路、短路、裂纹等。
- PySide6界面设计:设计一个简洁的图形用户界面(GUI),支持上传PCB图像并展示检测结果。