二叉树的讲解

目录

一、定义

1.1 树的定义

1.2 树的种类

1.3 二叉树的定义

1.4 二叉树的遍历

1.5 二叉树相关知识点

 1.6 C语言实现二叉树的存储

二、特殊的二叉树

真二叉树(Proper Binary Tree)

满二叉树(Full Binary Tree)

完全二叉树(Complete Binary Tree)

 三、其他常用的计算机应用中的树

二叉查找树

 AVL树(自平衡二叉查找树)

红黑树


一、定义

1.1 树的定义

树是一种数据结构,它是由n(n≥0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

每个节点有零个或多个子节点;
没有父节点的节点称为根节点;
每一个非根节点有且只有一个父节点;除了根节点外,每个子节点可以分为多个不相交的子树。

1.2 树的种类

无序树:树中任意节点的子结点之间没有顺序关系,这种树称为无序树,也称为自由树;
有序树:树中任意节点的子结点之间有顺序关系,这种树称为有序树;
二叉树:每个节点最多含有两个子树的树称为二叉树;
满二叉树:叶节点除外的所有节点均含有两个子树的树被称为满二叉树;
完全二叉树:除最后一层外,所有层都是满节点,且最后一层缺右边连续节点的二叉树称为完全二叉树;
哈夫曼树(最优二叉树):带权路径最短的二叉树称为哈夫曼树或最优二叉树。 

1.3 二叉树的定义

二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个节点最多只能有两棵子树,且有左右之分。

二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个节点。

1.4 二叉树的遍历

遍历表达法有4种方法:先序遍历、中序遍历、后序遍历、层次遍历

例如上图:
其先序遍历(又称先根遍历)为ABDCEF(根-左-右)
其中序遍历(又称中根遍历)为DBAECF(左-根-右)(仅二叉树有中序遍历)
其后序遍历(又称后根遍历)为DBEFCA(左-右-根)
其层次遍历为ABCDEF(同广度优先搜索)

1.5 二叉树相关知识点

名词介绍
节点包含一个数据元素及若干指向子树分支的信息
节点的度一个节点拥有子树的数目称为节点的度
叶子节点也称为终端节点,没有子树的节点或者度为零的节点
分支节点也称为非终端节点,度不为零的节点称为非终端节点
树的度树中所有节点的度的最大值
节点的层次从根节点开始,假设根节点为第1层,根节点的子节点为第2层,依此类推,如果某一个节点位于第L层,则其子节点位于第L+1层
树的深度(高度)也称为树的高度,树中所有节点的层次最大值称为树的深度
有序树如果树中各棵子树的次序是有先后次序,则称该树为有序树
无序树如果树中各棵子树的次序没有先后次序,则称该树为无序树
森林由m(m≥0)棵互不相交的树构成一片森林。如果把一棵非空的树的根节点删除,则该树就变成了一片森林,森林中的树由原来根节点的各棵子树构成

 1.6 C语言实现二叉树的存储

代码:

#include <stdio.h>
#include <stdlib.h>
    
//树的结点
typedef struct node{
    int data;
    struct node* left;
    struct node* right;
} Node;
  
//树根
typedef struct {
    Node* root;
} Tree;
  
//创建树--插入数据
void insert(Tree* tree, int value){
    //创建一个节点,让左右指针全部指向空,数据为value
    Node* node=(Node*)malloc(sizeof(Node));
    node->data = value;
    node->left = NULL;
    node->right = NULL;
  
    //判断树是不是空树,如果是,直接让树根指向这一个结点即可
    if (tree->root == NULL){
        tree->root = node;
    } else {//不是空树
        Node* temp = tree->root;//从树根开始
        while (temp != NULL){
            if (value < temp->data){ //小于就进左儿子
                if (temp->left == NULL){
                    temp->left = node;
                    return;
                } else {//继续往下搜寻
                    temp = temp->left;
                }
            } else { //否则进右儿子
                if (temp->right == NULL){
                    temp->right = node;
                    return;
                }
                else {//继续往下搜寻
                    temp = temp->right;
                }
            }
        }
    }
    return;
}

//树的先序遍历 Preorder traversal
void preorder(Node* node){
    if (node != NULL)
    {
        printf("%d ",node->data);
        preorder(node->left);
        preorder(node->right);
    }
}
  
//树的中序遍历 In-order traversal
void inorder(Node* node){
    if (node != NULL)
    {
        inorder(node->left);
        printf("%d ",node->data);
        inorder(node->right);
    }
}

//树的后序遍历 Post-order traversal
void postorder(Node* node){
    if (node != NULL)
    {
        postorder(node->left);
        postorder(node->right);
        printf("%d ",node->data);
    }
}
  
int main(){
    Tree tree;
    tree.root = NULL;//创建一个空树
    int n;
    printf("请输出节点个数:");
    scanf("%d",&n);
  
    //输入n个数并创建这个树
    for (int i = 0; i < n; i++){
        int temp;
        scanf("%d",&temp);
        insert(&tree, temp);
    }
    
    printf("树的先序遍历结果:");
    preorder(tree.root);
    printf("\n");

    printf("树的中序遍历结果:");
    inorder(tree.root);
    printf("\n");

    printf("树的后序遍历结果:");
    postorder(tree.root);
    printf("\n");
  
    return 0;
}

 演示结果:

二、特殊的二叉树

真二叉树(Proper Binary Tree)

定义:所有节点的度要么为0,要么为2

满二叉树(Full Binary Tree)

 定义:所有节点的度要么为0,要么为2,且所有的叶子节点都在最后一层

 性质:假设满二叉树的高度为h(h ≥ 1),那么

            第 i 层的结点数量:2^{i-1}
            叶子结点数量:2^{h-1}
            总结点数:n = 2^{h} -  1 = 2^{0} + 2^{1} + 2^{2} … + 2^{h-1}
            高度:h = log_{2}(n+1)

 满二叉树一定是真二叉树,真二叉树不一定是满二叉树。

完全二叉树(Complete Binary Tree)

定义:叶子节点只会出现"最后2层",且"最后1层"的叶子节点都靠"左对齐"

满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树。

 三、其他常用的计算机应用中的树

二叉查找树

二叉查找树(Binary Search Tree),又称二叉排序树(Binary Sort Tree),亦称二叉搜索树。是数据结构中的一类。在一般情况下,查询效率比链表结构要高。

一棵空树或者是具有下列性质的二叉树:

(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
  特性:左子树<根<右子树 ,即二叉查找树的中序遍历是一个递增序列。

  没有键值相等的结点。

如下图的二叉查找树,中序遍历结果为 5、8、10、12、 13、15、16、18

C语言实现二叉查找树:

#include<stdio.h>
#include<stdlib.h>
#define TRUE 1
#define FALSE 0
#define ElemType int
#define  KeyType int

/* 二叉排序树的节点结构定义 */
typedef struct BiTNode
{
    int data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;

//二叉排序树查找算法
int SearchBST(BiTree T, KeyType key, BiTree f, BiTree *p) {
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T) {
        *p = f;
        return FALSE;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if (key == T->data) {
        *p = T;
        return TRUE;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if (key < T->data) {
        return SearchBST(T->lchild, key, T, p);
    }
    else {
        return SearchBST(T->rchild, key, T, p);
    }
}

int InsertBST(BiTree *T, ElemType e) {
    BiTree p = NULL;
    //如果查找不成功,需做插入操作
    if (!SearchBST((*T), e, NULL, &p)) {
        //初始化插入结点
        BiTree s = (BiTree)malloc(sizeof(BiTNode));
        s->data = e;
        s->lchild = s->rchild = NULL;
        //如果 p 为NULL,说明该二叉排序树为空树,此时插入的结点为整棵树的根结点
        if (!p) {
            *T = s;
        }
        //如果 p 不为 NULL,则 p 指向的为查找失败的最后一个叶子结点,只需要通过比较 p 和 e 的值确定 s 到底是 p 的左孩子还是右孩子
        else if (e < p->data) {
            p->lchild = s;
        }
        else {
            p->rchild = s;
        }
        return TRUE;
    }
    //如果查找成功,不需要做插入操作,插入失败
    return FALSE;
}

//删除函数
int Delete(BiTree *p)
{
    BiTree q, s;
    //情况 1,结点 p 本身为叶子结点,直接删除即可
    if (!(*p)->lchild && !(*p)->rchild) {
        *p = NULL;
    }
    else if (!(*p)->lchild) { //左子树为空,只需用结点 p 的右子树根结点代替结点 p 即可;
        q = *p;
        *p = (*p)->rchild;
        free(q);
    }
    else if (!(*p)->rchild) {//右子树为空,只需用结点 p 的左子树根结点代替结点 p 即可;
        q = *p;
        *p = (*p)->lchild;//这里不是指针 *p 指向左子树,而是将左子树存储的结点的地址赋值给指针变量 p
        free(q);
    }
    else {//左右子树均不为空,采用第 2 种方式
        q = *p;
        s = (*p)->lchild;
        //遍历,找到结点 p 的直接前驱
        while (s->rchild)
        {
            q = s;
            s = s->rchild;
        }
        //直接改变结点 p 的值
        (*p)->data = s->data;
        //判断结点 p 的左子树 s 是否有右子树,分为两种情况讨论
        if (q != *p) {
            q->rchild = s->lchild;//若有,则在删除直接前驱结点的同时,令前驱的左孩子结点改为 q 指向结点的孩子结点
        }
        else {
            q->lchild = s->lchild;//否则,直接将左子树上移即可
        }
        free(s);
    }
    return TRUE;
}

int DeleteBST(BiTree *T, int key)
{
    if (!(*T)) {//不存在关键字等于key的数据元素
        return FALSE;
    }
    else
    {
        if (key == (*T)->data) {
            Delete(T);
            return TRUE;
        }
        else if (key < (*T)->data) {
            //使用递归的方式
            return DeleteBST(&(*T)->lchild, key);
        }
        else {
            return DeleteBST(&(*T)->rchild, key);
        }
    }
}

void order(BiTree t)//中序输出
{
    if (t == NULL) {
        return;
    }
    order(t->lchild);
    printf("%d ", t->data);
    order(t->rchild);
}

int main()
{
    int i;
    int a[8] = { 12,8,18,5,10,15,13,16 };
    BiTree T = NULL;
    for (i = 0; i < 8; i++) {
        InsertBST(&T, a[i]);
    }
    printf("中序遍历二叉排序树:\n");
    order(T);
    printf("\n");
    printf("删除10后,中序遍历二叉排序树:\n");
    DeleteBST(&T, 10);
    order(T);
    printf("\n");
}

 实现结果:

 AVL树(自平衡二叉查找树)

AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis。

AVL树本质上还是一棵二叉搜索树,它的特点是:

1.本身首先是一棵二叉搜索树。
2.带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。

也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树)。 

如下图所示: 

 

红黑树

红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。红黑树是一种特化的AVL树(平衡二叉树),都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。 

红黑树是每个结点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,红黑树特征: 

1. 结点是红色或黑色。
2. 根结点是黑色。
3. 所有叶子都是黑色。(叶子是NIL结点)
4. 每个红色结点的两个子结点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色结点)
5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。 

6. 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长

如下图所示: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_68949064

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值