关于‘Leetcode105:从前序和中序遍历构造二叉树‘的一些个人思路

先看题:

什么是二叉树的遍历?

先简单回顾下两种遍历方式:

  • 前序遍历:先访问根节点,再遍历左子树,最后遍历右子树(根 -> 左 -> 右)
  • 中序遍历:先遍历左子树,再访问根节点,最后遍历右子树(左 -> 根 -> 右)

比如一棵简单的树:

    3
   / \
  9  20
    /  \
   15   7

前序遍历就是:3,9,20,15,7
中序遍历就是:9,3,15,20,7

核心思路:怎么从两个数组还原树?

咱们的目标是:给你这两个数组,让你把树重新画出来。

关键发现:

  1. 前序遍历的第一个元素肯定是整个树的根节点(比如上面的 3)
  2. 在中序遍历里,根节点左边的都是左子树的节点,右边的都是右子树的节点(比如 3 左边的 9 是左子树,右边的 15,20,7 是右子树)

知道了这个,就能分步骤来:

  • 找根节点(前序数组第一个)
  • 确定左子树有多少个节点(看中序数组里根节点左边有几个元素)
  • 把前序和中序数组都分成左子树和右子树两部分
  • 递归处理左子树和右子树

代码里具体怎么做的?

第一步:建立索引表

先把中序遍历的每个值和它的位置存到哈希表里,这样查根节点在中序里的位置时就能一步到位,不用每次都遍历查找。

Map<Integer,Integer> index = new HashMap<>(n);
for(int i = 0;i < n;i++){
    index.put(inorder[i],i);  // 键是节点值,值是在中序数组里的索引
}

第二步:递归构建树

递归函数dfs的参数有点多,咱们一个个看:

  • preL, preR:当前处理的前序数组范围(从 preL 到 preR,包含 preL,不包含 preR)
  • inL, inR:当前处理的中序数组范围(同上)
  • index:就是上面建的哈希表

具体步骤:

  1. 终止条件:如果 preL 等于 preR,说明这段里没节点了,返回 null

  2. 找根节点:前序数组里 preL 位置的元素就是当前子树的根节点值

  3. 算左子树大小:在中序数组里找到根节点的位置,减去 inL,就是左子树的节点数

    比如根节点在中序里的位置是 x,那么左子树就有 x - inL 个节点

  4. 递归建左子树

    • 前序范围:preL+1 到 preL+1 + 左子树大小(因为前序里根后面紧跟着左子树)
    • 中序范围:inL 到 inL + 左子树大小(中序里根左边是左子树)
  5. 递归建右子树

    • 前序范围:preL+1 + 左子树大小 到 preR(剩下的都是右子树)
    • 中序范围:inL + 左子树大小 + 1 到 inR(中序里根右边是右子树)
  6. 组装节点:用根节点值、左子树、右子树创建一个新节点并返回

举个例子走一遍

还是用前面的例子:
前序:[3,9,20,15,7]
中序:[9,3,15,20,7]

第一次调用:

  • preL=0, preR=5(整个前序数组)
  • inL=0, inR=5(整个中序数组)
  • 根节点是 preorder [0]=3
  • 在中序里找 3 的位置是 1,所以左子树大小 = 1-0=1

左子树递归:

  • 前序范围:1 到 2(即 [9])
  • 中序范围:0 到 1(即 [9])
  • 根是 9,左右都为空,所以这是个叶子节点

右子树递归:

  • 前序范围:2 到 5(即 [20,15,7])
  • 中序范围:2 到 5(即 [15,20,7])
  • 根是 20,在中序里位置是 3,左子树大小 = 3-2=1

就这样一层一层递归下去,整个树就建起来了。

代码优点在哪?

  1. 用哈希表存中序索引,查找根节点位置是 O (1),比每次遍历快多了
  2. 用索引范围来划分数组,不用真的切割数组,节省空间
  3. 递归思路清晰,把大问题拆成小问题,容易理解

可能遇到的疑问

  • 为什么树里不能有重复元素?因为哈希表会覆盖相同的值,就找不到正确的位置了
  • 时间复杂度:每个节点处理一次,哈希表插入和查找都是 O (1),所以整体 O (n)
  • 空间复杂度:哈希表存 n 个元素,递归最深可能到 n 层,所以 O (n)

完整代码:

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        // 创建中序遍历值到索引的映射,加速查找
        Map<Integer,Integer> index = new HashMap<>(n);
        for(int i = 0;i < n;i++){
            index.put(inorder[i],i);
        }
        // 调用递归函数构建二叉树
        return dfs(preorder,0,n,0,n,index);
    }
    
    /**
     * 递归构建二叉树
     * @param preorder 前序遍历数组
     * @param preL 前序遍历当前子树的起始索引(包含)
     * @param preR 前序遍历当前子树的结束索引(不包含)
     * @param inL 中序遍历当前子树的起始索引(包含)
     * @param inR 中序遍历当前子树的结束索引(不包含)
     * @param index 中序遍历值到索引的映射
     * @return 当前子树的根节点
     */
    private TreeNode dfs(int[] preorder,int preL,int preR,int inL,int inR,Map<Integer,Integer> index){
        // 递归终止条件:当前子树没有节点
        if(preL == preR){
            return null;
        }
        
        // 前序遍历的第一个元素是当前子树的根节点
        int rootVal = preorder[preL];
        // 计算左子树的节点数量
        int leftSize = index.get(rootVal) - inL;
        
        // 递归构建左子树
        TreeNode left = dfs(preorder,preL + 1,preL + 1 + leftSize,inL,inL + leftSize,index);
        // 递归构建右子树
        TreeNode right = dfs(preorder,preL + 1 + leftSize,preR,inL + leftSize + 1,inR,index);
        
        // 创建当前根节点并返回
        return new TreeNode(rootVal,left,right);
    }
}

        这种通过两种遍历还原树的方法很经典,掌握了思路,不管是前序 + 中序,还是中序 + 后序,道理都差不多,都是利用遍历的特性来拆分问题~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值