先看题:
什么是二叉树的遍历?
先简单回顾下两种遍历方式:
- 前序遍历:先访问根节点,再遍历左子树,最后遍历右子树(根 -> 左 -> 右)
- 中序遍历:先遍历左子树,再访问根节点,最后遍历右子树(左 -> 根 -> 右)
比如一棵简单的树:
3
/ \
9 20
/ \
15 7
前序遍历就是:3,9,20,15,7
中序遍历就是:9,3,15,20,7
核心思路:怎么从两个数组还原树?
咱们的目标是:给你这两个数组,让你把树重新画出来。
关键发现:
- 前序遍历的第一个元素肯定是整个树的根节点(比如上面的 3)
- 在中序遍历里,根节点左边的都是左子树的节点,右边的都是右子树的节点(比如 3 左边的 9 是左子树,右边的 15,20,7 是右子树)
知道了这个,就能分步骤来:
- 找根节点(前序数组第一个)
- 确定左子树有多少个节点(看中序数组里根节点左边有几个元素)
- 把前序和中序数组都分成左子树和右子树两部分
- 递归处理左子树和右子树
代码里具体怎么做的?
第一步:建立索引表
先把中序遍历的每个值和它的位置存到哈希表里,这样查根节点在中序里的位置时就能一步到位,不用每次都遍历查找。
Map<Integer,Integer> index = new HashMap<>(n);
for(int i = 0;i < n;i++){
index.put(inorder[i],i); // 键是节点值,值是在中序数组里的索引
}
第二步:递归构建树
递归函数dfs
的参数有点多,咱们一个个看:
- preL, preR:当前处理的前序数组范围(从 preL 到 preR,包含 preL,不包含 preR)
- inL, inR:当前处理的中序数组范围(同上)
- index:就是上面建的哈希表
具体步骤:
-
终止条件:如果 preL 等于 preR,说明这段里没节点了,返回 null
-
找根节点:前序数组里 preL 位置的元素就是当前子树的根节点值
-
算左子树大小:在中序数组里找到根节点的位置,减去 inL,就是左子树的节点数
比如根节点在中序里的位置是 x,那么左子树就有 x - inL 个节点
-
递归建左子树:
- 前序范围:preL+1 到 preL+1 + 左子树大小(因为前序里根后面紧跟着左子树)
- 中序范围:inL 到 inL + 左子树大小(中序里根左边是左子树)
-
递归建右子树:
- 前序范围:preL+1 + 左子树大小 到 preR(剩下的都是右子树)
- 中序范围:inL + 左子树大小 + 1 到 inR(中序里根右边是右子树)
-
组装节点:用根节点值、左子树、右子树创建一个新节点并返回
举个例子走一遍
还是用前面的例子:
前序:[3,9,20,15,7]
中序:[9,3,15,20,7]
第一次调用:
- preL=0, preR=5(整个前序数组)
- inL=0, inR=5(整个中序数组)
- 根节点是 preorder [0]=3
- 在中序里找 3 的位置是 1,所以左子树大小 = 1-0=1
左子树递归:
- 前序范围:1 到 2(即 [9])
- 中序范围:0 到 1(即 [9])
- 根是 9,左右都为空,所以这是个叶子节点
右子树递归:
- 前序范围:2 到 5(即 [20,15,7])
- 中序范围:2 到 5(即 [15,20,7])
- 根是 20,在中序里位置是 3,左子树大小 = 3-2=1
就这样一层一层递归下去,整个树就建起来了。
代码优点在哪?
- 用哈希表存中序索引,查找根节点位置是 O (1),比每次遍历快多了
- 用索引范围来划分数组,不用真的切割数组,节省空间
- 递归思路清晰,把大问题拆成小问题,容易理解
可能遇到的疑问
- 为什么树里不能有重复元素?因为哈希表会覆盖相同的值,就找不到正确的位置了
- 时间复杂度:每个节点处理一次,哈希表插入和查找都是 O (1),所以整体 O (n)
- 空间复杂度:哈希表存 n 个元素,递归最深可能到 n 层,所以 O (n)
完整代码:
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
// 创建中序遍历值到索引的映射,加速查找
Map<Integer,Integer> index = new HashMap<>(n);
for(int i = 0;i < n;i++){
index.put(inorder[i],i);
}
// 调用递归函数构建二叉树
return dfs(preorder,0,n,0,n,index);
}
/**
* 递归构建二叉树
* @param preorder 前序遍历数组
* @param preL 前序遍历当前子树的起始索引(包含)
* @param preR 前序遍历当前子树的结束索引(不包含)
* @param inL 中序遍历当前子树的起始索引(包含)
* @param inR 中序遍历当前子树的结束索引(不包含)
* @param index 中序遍历值到索引的映射
* @return 当前子树的根节点
*/
private TreeNode dfs(int[] preorder,int preL,int preR,int inL,int inR,Map<Integer,Integer> index){
// 递归终止条件:当前子树没有节点
if(preL == preR){
return null;
}
// 前序遍历的第一个元素是当前子树的根节点
int rootVal = preorder[preL];
// 计算左子树的节点数量
int leftSize = index.get(rootVal) - inL;
// 递归构建左子树
TreeNode left = dfs(preorder,preL + 1,preL + 1 + leftSize,inL,inL + leftSize,index);
// 递归构建右子树
TreeNode right = dfs(preorder,preL + 1 + leftSize,preR,inL + leftSize + 1,inR,index);
// 创建当前根节点并返回
return new TreeNode(rootVal,left,right);
}
}
这种通过两种遍历还原树的方法很经典,掌握了思路,不管是前序 + 中序,还是中序 + 后序,道理都差不多,都是利用遍历的特性来拆分问题~