线性代数-正交矩阵与格拉姆-施密特正交化

正交矩阵与格拉姆-施密特正交化

线性代数中,正交矩阵格拉姆-施密特正交化是两个非常重要的概念。它们通常在多维空间的坐标变换、求解线性方程、数据降维等方面有广泛应用。下面分别介绍这两个概念。


1. 正交矩阵(Orthogonal Matrix)

1.1 定义

一个矩阵 Q 被称为正交矩阵,如果它满足以下条件:

QTQ=QQT=I Q^T Q = Q Q^T = I QTQ=QQT=I

其中,Q^T 是矩阵 Q 的转置矩阵,I 是单位矩阵。

正交矩阵的一个重要性质是它的逆矩阵等于它的转置矩阵,即:

Q−1=QT Q^{-1} = Q^T Q1=QT

1.2 正交矩阵的性质
  1. 行列式为±1:正交矩阵的行列式必定是 1 或 -1。即:

det(Q)=±1 \text{det}(Q) = \pm 1 det(Q)=±1

  1. 保持向量长度:如果 Q 是一个正交矩阵,那么对于任意向量 v,有:

∥Qv∥=∥v∥ \|Qv\| = \|v\| Qv=v

这意味着正交矩阵保持向量的模(长度),因此它可以看作是一个旋转或反射变换,而不改变向量的长度。

  1. 保持向量间的夹角:正交矩阵还可以保持向量间的夹角,即对于任意两个向量 uv,有:

(u⋅v)=(Qu⋅Qv) (u \cdot v) = (Qu \cdot Qv) (uv)=(QuQv)

  1. 正交变换:正交矩阵代表了一个正交变换,通常用于旋转、反射等操作。
1.3 正交矩阵的例子

一个常见的正交矩阵是二维空间中的旋转矩阵。例如,旋转矩阵 Q,将二维空间中的向量逆时针旋转角度 θ

Q=(cos⁡θ−sin⁡θsin⁡θcos⁡θ) Q = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} Q=(cosθsinθsinθcosθ)

它满足 Q^T Q = I,因此是一个正交矩阵。


2. 格拉姆-施密特正交化(Gram-Schmidt Orthogonalization)

2.1 定义

格拉姆-施密特正交化是将一组线性无关的向量转化为一组正交向量的过程。该过程不仅能够得到正交向量,而且在需要时,还可以通过标准化得到正交单位向量

假设我们有一组线性无关的向量 {v₁, v₂, …, vₖ},格拉姆-施密特过程将其转化为一组正交向量 {u₁, u₂, …, uₖ},其中:

  1. u₁ = v₁
  2. u₂ = v₂ - proj(u₁, v₂)
  3. u₃ = v₃ - proj(u₁, v₃) - proj(u₂, v₃)
  4. 以此类推,其中 proj(uₖ, v) 是向量 v 在向量 uₖ 上的投影,计算公式为:

proj(u,v)=u⋅vu⋅uu \text{proj}(u, v) = \frac{u \cdot v}{u \cdot u} u proj(u,v)=uuuvu

2.2 格拉姆-施密特过程步骤

给定一组线性无关的向量 {v₁, v₂, …, vₖ},通过格拉姆-施密特过程生成一组正交向量 {u₁, u₂, …, uₖ} 的步骤如下:

  1. 选择第一个向量 u₁

u1=v1 u_1 = v_1 u1=v1

  1. 从第二个向量开始,用它减去它在之前所有已计算出的正交向量上的投影:

u2=v2−proj(u1,v2) u_2 = v_2 - \text{proj}(u_1, v_2) u2=v2proj(u1,v2)

其中,proj(u₁, v₂) 表示向量 v₂u₁ 上的投影,计算公式为:

proj(u1,v2)=v2⋅u1u1⋅u1u1 \text{proj}(u_1, v_2) = \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1 proj(u1,v2)=u1u1v2u1u1

  1. 对第三个向量 v₃,用它减去它在 u₁u₂ 上的投影:

u3=v3−proj(u1,v3)−proj(u2,v3) u_3 = v_3 - \text{proj}(u_1, v_3) - \text{proj}(u_2, v_3) u3=v3proj(u1,v3)proj(u2,v3)

  1. 继续进行,直到将所有的向量都处理完。

通过这个过程,我们就能得到一组正交向量 {u₁, u₂, …, uₖ}

2.3 格拉姆-施密特正交化的例子

假设有两个线性无关的向量 v₁ = (1, 1)v₂ = (1, 0),我们通过格拉姆-施密特过程来得到它们的正交基。

  1. 选择第一个向量 u₁ = v₁

u1=(1,1) u_1 = (1, 1) u1=(1,1)

  1. 计算第二个向量 u₂

首先,计算 v₂u₁ 上的投影:

proj(u1,v2)=(1,0)⋅(1,1)(1,1)⋅(1,1)(1,1)=12(1,1) \text{proj}(u_1, v_2) = \frac{(1, 0) \cdot (1, 1)}{(1, 1) \cdot (1, 1)} (1, 1) = \frac{1}{2} (1, 1) proj(u1,v2)=(1,1)(1,1)(1,0)(1,1)(1,1)=21(1,1)

然后计算 u₂

u2=v2−proj(u1,v2)=(1,0)−12(1,1)=(1,0)−(0.5,0.5)=(0.5,−0.5) u_2 = v_2 - \text{proj}(u_1, v_2) = (1, 0) - \frac{1}{2} (1, 1) = (1, 0) - (0.5, 0.5) = (0.5, -0.5) u2=v2proj(u1,v2)=(1,0)21(1,1)=(1,0)(0.5,0.5)=(0.5,0.5)

因此,得到的正交基为 u₁ = (1, 1)u₂ = (0.5, -0.5)

2.4 正交单位化

一旦得到了正交向量,我们还可以将这些向量标准化(即将它们转化为单位向量)。标准化的过程如下:

ui′=ui∥ui∥ u'_i = \frac{u_i}{\|u_i\|} ui=uiui

通过标准化,我们可以得到一组正交单位向量,这组向量不仅正交,而且每个向量的模为1。


3. 正交矩阵与格拉姆-施密特的关系

通过格拉姆-施密特过程得到的一组正交向量,可以用来构造一个正交矩阵。如果我们有一组正交单位向量 {u₁, u₂, …, uₖ},那么将这些向量按列排列成矩阵 Q,即:

Q=(u1u2⋯uk) Q = \begin{pmatrix} u_1 & u_2 & \cdots & u_k \end{pmatrix} Q=(u1u2uk)

这个矩阵 Q 就是一个正交矩阵。由于每列向量都是单位向量且正交,所以 Q^T Q = I,即 Q 是一个正交矩阵。


4. 总结

  1. 正交矩阵:一个矩阵是正交的,当且仅当其转置矩阵与原矩阵相乘得到单位矩阵,即 Q^T Q = I。正交矩阵的逆矩阵等于其转置矩阵。

  2. 格拉姆-施密特正交化:这是将一组线性无关的向量转化为一组正交向量的过程。通过逐步去除向量在已生成的正交向量上的分量,可以得到一组正交向量。

  3. 正交矩阵与正交基:通过格拉姆-施密特过程得到的正交向量,可以构造一个正交矩阵,它代表了一种坐标变换,能够保持向量的长度和夹角。

正交矩阵和格拉姆-施密特正交化在计算机图形学、数据分析、物理学等领域都有广泛的应用,尤其在旋转、反射等变换中尤为重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值