
小孩哥总结MIT线性代数
文章平均质量分 90
超华东算法王
微信号:yoggyzh
重磅推出:更新ing:Java难点解读,百战大厂面试; 即将更新系列:自传统编程:rust语言之旅,go语言之旅,c#语言之旅,swift语言之旅,oc语言之旅,Lua语言之旅 黑皮书之旅1:算法导论,neo4j之旅,redis之旅;python高级:opencv3.0,chatgpt,LLM,python-WEB,数据开发,web安全,SQL高级,大数据基础,linux高级,hadoop技术栈,hive
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
麻省理工线性代数-伪逆
伪逆是广义逆的一种特殊形式,常见的伪逆是。原创 2025-01-19 08:35:57 · 1989 阅读 · 0 评论 -
麻省理工-线性代数左右逆
对于一个矩阵(A),我们可以分别定义。原创 2025-01-19 08:35:18 · 1004 阅读 · 0 评论 -
麻省理工-图像压缩
图像可以看作是一个二维矩阵,每个元素表示图像中的一个像素值。例如,对于一个灰度图像,矩阵中的每个元素代表图像中对应位置的灰度值(通常是一个整数,范围在0到255之间)。图像压缩的目标是通过减少存储这些像素值所需要的数据量来减小图像的文件大小。原创 2025-01-19 08:34:33 · 734 阅读 · 0 评论 -
麻省理工-基变换
基变换的关键思想是,在不同的基下表示同一个向量或线性变换。通过基变换矩阵,我们可以在两个基之间转换向量的坐标。通过例题演示了如何根据基向量之间的关系计算基变换矩阵,并如何用基变换矩阵将向量从一个基转换到另一个基。原创 2025-01-19 08:34:00 · 731 阅读 · 0 评论 -
麻省理工-线性变换及其矩阵
线性变换是数学中一种非常基础且重要的概念,广泛应用于几何学、物理学、工程学等多个领域。在更广泛的数学领域中,线性变换和矩阵密切相关,它们可以通过矩阵来表示和计算。在向量空间中,线性变换(LinearTransformation)是指一种特殊的映射,它将一个向量空间中的向量映射到另一个向量空间,且满足以下两个条件:加法性:对于任意两个向量u和v,有T(u+v)=T(u)+T(v)T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})T原创 2025-01-19 08:32:27 · 670 阅读 · 0 评论 -
线性代数-奇异值分解
奇异值分解(SVD)是矩阵分解的一种重要方法,它将一个任意的矩阵分解成三个矩阵的乘积,能够揭示矩阵的许多重要性质。SVD在信号处理、数据压缩、推荐系统、图像处理、机器学习等领域有着广泛应用。对于一个任意的(m\timesn)矩阵(A),SVD将其分解为以下形式:A=UΣVTA=U\SigmaV^TA=UΣVT其中:可以认为,SVD将矩阵(A)映射成了一个在某个新的正交基下的表示。从几何角度看,SVD可以看作是对矩阵所表示的线性变换的“主成分分析”。SVD通过三个矩阵对原原创 2025-01-19 08:21:57 · 679 阅读 · 0 评论 -
线性代数-若尔当形
若尔当标准形是一个方阵通过相似变换转化后得到的一个特殊形式。对于任意一个方阵 ( A ),它总是可以通过相似变换(即 ( P^{-1} A P ),其中 ( P ) 是可逆矩阵)转化为一个对角块矩阵,这个对角块矩阵称为。原创 2025-01-18 09:18:22 · 1147 阅读 · 0 评论 -
线性代数-相似矩阵
两个矩阵 ( A ) 和 ( B ) 被称为相似的APBP−1APBP−1( A ) 和 ( B ) 是 ( n \times n ) 的方阵,( P ) 是一个可逆矩阵(即 ( P^{-1} ) 存在)。如果 ( A ) 和 ( B ) 满足上述条件,则称 ( A ) 和 ( B ) 是相似矩阵,记作 ( A \sim B )。相似矩阵是通过相似变换连接的两个矩阵,它们具有相同的特征值、相同的迹、相同的秩等。判断矩阵是否相似通常依赖于特征值检查、对角化等方法。原创 2025-01-18 09:17:14 · 1815 阅读 · 0 评论 -
正定矩阵和求最小值
一个对称矩阵( A ) 被称为正定矩阵xTAx0xTAx0换句话说,矩阵 ( A ) 是正定的,当且仅当对任何非零向量 ( \mathbf{x} )(向量不为零向量),其二次型 ( \mathbf{x}^T A \mathbf{x} ) 总是大于零。正定矩阵是对称矩阵的一种特殊类型,具有许多重要性质,尤其在优化问题中确保问题的稳定性和解的唯一性。求最小值是优化问题中的核心任务,常见的求解方法包括求导法、梯度下降法和牛顿法等。原创 2025-01-18 09:16:44 · 589 阅读 · 0 评论 -
快速傅里叶变换
快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)。通过分治法和递归计算,FFT 大大减少了计算的复杂度,从而使得在实际应用中能够处理大量数据。FFT 在信号处理、图像处理、音频处理、数字通信等领域有着广泛的应用。原创 2025-01-18 09:16:05 · 577 阅读 · 0 评论 -
线性代数-复数矩阵
Az11z12⋯z1mz21z22⋯z2m⋮⋮⋱⋮zn1zn2⋯znmAz11z21⋮zn1z12z22⋮zn2⋯⋯⋱⋯z1mz2m⋮znm其中,( z_{ij} \in \mathbb{C} ),表示矩阵 ( A ) 中的元素是复数。复数矩阵是由复数元素构成的矩阵,它们在许多数学和工程领域中有着重要的应用。原创 2025-01-18 09:15:33 · 936 阅读 · 0 评论 -
线性代数综合测评试卷-带答案
由正定矩阵的定义可得,( \mathbf{x}^T A \mathbf{x} > 0 ) 对于所有非零 ( \mathbf{x} ),因此矩阵的所有特征值均大于零。A. ( \mathbf{x}^T A \mathbf{x} \geq 0 ) 对于所有 ( \mathbf{x} )。B. ( \mathbf{x}^T A \mathbf{x} > 0 ) 对于所有非零 ( \mathbf{x} )。对于二次型 ( Q(x_1, x_2) = 2x_1^2 + 4x_1x_2 + 2x_2^2 ),原创 2025-01-18 09:14:39 · 588 阅读 · 0 评论 -
矩阵及正定性
对称矩阵是矩阵满足 ( A = A^T )。正定矩阵是对称矩阵并且对于所有非零向量 ( \mathbf{x} ),都有 ( \mathbf{x}^T A \mathbf{x} > 0 )。原创 2025-01-18 09:14:04 · 836 阅读 · 0 评论 -
傅里叶级数
随着傅里叶级数展开的项数增加,级数的和越来越接近原始函数。通过计算傅里叶系数 ( a_0 )、( a_n ) 和 ( b_n ),可以得到方波的傅里叶级数展开。并且具有有限个不连续点,傅里叶级数通常会收敛到 ( f(x) ) 的平均值。更强的条件下,例如 ( f(x) ) 是分段光滑的,傅里叶级数收敛的效果会更好。:在分析电路中的交流信号时,傅里叶级数能够帮助工程师理解信号的频率成分,进而设计滤波器等设备。:傅里叶级数用于图像的频域分析,帮助识别图像中的不同频率成分,应用于图像压缩、去噪等技术。原创 2025-01-18 09:13:16 · 2263 阅读 · 0 评论 -
马尔可夫矩阵
设有一个马尔可夫链,其状态空间是有限的。原创 2025-01-18 09:12:34 · 1558 阅读 · 0 评论 -
线性代数-exp(At)
( \exp(At) ) 是矩阵指数(Matrix Exponential)的一个重要表示,广泛应用于微分方程、控制理论、量子力学等领域。特别是在解线性常微分方程组时,矩阵指数是一个关键的工具。矩阵指数 ( \exp(At) ) 是描述系统随时间演化的一个重要工具,尤其在解线性微分方程组时有广泛应用。通过对矩阵 ( A ) 进行对角化或者使用其他技巧(如Jordan标准形),我们可以求出 ( \exp(At) )。在实际问题中,矩阵指数帮助我们分析和描述动态系统的行为,如稳定性和状态转移。原创 2025-01-18 09:12:02 · 1112 阅读 · 0 评论 -
线性代数-微分方程
微分方程通过描述系统的变化率来帮助我们建模和解决实际问题。解决微分方程的过程通常依赖于方程的类型、方法的选择以及是否能获得解析解。在某些情况下,无法找到解析解时可以使用数值方法近似解。原创 2025-01-18 09:11:25 · 1167 阅读 · 0 评论 -
线性代数-对角化和A的幂
APDP−1APDP−1其中,( D ) 是一个对角矩阵,且 ( P ) 是由矩阵 ( A ) 的特征向量组成的矩阵,那么矩阵 ( A ) 就被称为是对角化的,且其特征值即为对角矩阵 ( D ) 的对角元素。对角化是将一个矩阵通过特征值和特征向量转化为对角矩阵的过程。对角化使得许多矩阵操作(如求幂)变得更加简便。矩阵的幂通过对角化可以更容易计算,特别是在矩阵可以对角化的情况下,矩阵的幂只需计算对角矩阵的幂即可。原创 2025-01-18 09:10:49 · 544 阅读 · 0 评论 -
线性代数-特征值和特征向量
设 ( A ) 是一个 ( n \times n ) 的矩阵。AvλvAvλv则称 ( \lambda ) 为矩阵 ( A ) 的特征值,而 ( \mathbf{v} ) 是与 ( \lambda ) 对应的特征向量。( \mathbf{v} ) 是矩阵 ( A ) 的特征向量,( \lambda ) 是对应的特征值。换句话说,矩阵 ( A ) 对特征向量 ( \mathbf{v} ) 的作用只是将其按特征值 ( \lambda ) 缩放,而没有改变方向。特征值。原创 2025-01-18 09:10:06 · 997 阅读 · 0 评论 -
线性代数-特征值和特征向量
设 ( A ) 是一个 ( n \times n ) 的矩阵。AvλvAvλv则称 ( \lambda ) 为矩阵 ( A ) 的特征值,而 ( \mathbf{v} ) 是与 ( \lambda ) 对应的特征向量。( \mathbf{v} ) 是矩阵 ( A ) 的特征向量,( \lambda ) 是对应的特征值。换句话说,矩阵 ( A ) 对特征向量 ( \mathbf{v} ) 的作用只是将其按特征值 ( \lambda ) 缩放,而没有改变方向。特征值。原创 2025-01-18 09:01:59 · 775 阅读 · 0 评论 -
克拉默法则(Cramer‘s Rule)、逆矩阵与体积
克拉默法则:用于通过行列式解线性方程组,适用于行列式不为零的方程组。逆矩阵:只有当矩阵的行列式不为零时,逆矩阵才存在。计算逆矩阵的方法包括伴随矩阵法。体积:行列式的绝对值表示由矩阵的列向量所张成的n维平行多面体的体积。原创 2025-01-18 08:56:32 · 1483 阅读 · 0 评论 -
线性代数-行列式公式与代数余子式
对于一个n×n的方阵A = [aᵢⱼ],它的行列式det(A)可以通过代数余子式和排列符号展开得到。行列式的计算公式一般采用递归展开法。代数余子式是行列式计算中的一个重要概念,它是矩阵元素的乘积,但需要考虑行列的删除和符号的变化。具体来说,代数余子式是余子式和符号因子的乘积。余子式(Minor):余子式是删除矩阵中的某一行和某一列后得到的子矩阵的行列式。假设有一个n×n矩阵A,其余子式Mᵢⱼ对应的是删除i行和j列后的矩阵的行列式。符号因子:符号因子是(-1)^{i+j},其中i和j分别是元素aᵢⱼ。原创 2025-01-17 10:22:56 · 2218 阅读 · 0 评论 -
行列式及其性质
对于一个n×n的方阵,它的行列式记作det(A)或|A|,其定义是基于排列符号和元素的代数余子式。行列式是与方阵相关的标量,反映了矩阵的可逆性、特征值等属性。性质行列式与矩阵的可逆性密切相关。行列式在矩阵转置、乘法、标量乘法等操作中有简单的变换规律。行列式的值与矩阵的行列线性独立性、几何性质相关。计算通过递归展开、三角矩阵法等方法来计算行列式。行列式是线性代数中的重要工具,广泛应用于方程组的解、特征值问题、几何计算等领域。原创 2025-01-17 10:22:07 · 2167 阅读 · 0 评论 -
线性代数-投影矩阵与最小二乘法
在线性代数中,投影矩阵是一个矩阵,将一个向量投影到某个子空间。假设我们有一个子空间U,如果我们想将一个向量v投影到该子空间上,投影结果p投影结果p属于子空间U。向量v - p与子空间U中的所有向量正交。如果子空间U由一组基向量张成,则投影矩阵P将向量v投影到U上。投影矩阵PPAATA−1ATPAATA−1AT其中,矩阵A的列向量是子空间U的基向量。A是由子空间U的基向量组成的矩阵。是一个矩阵,它代表了将向量v投影到由A张成的列空间上的变换。投影矩阵。原创 2025-01-17 10:20:36 · 1475 阅读 · 0 评论 -
线性代数-正交矩阵与格拉姆-施密特正交化
一个矩阵Q被称为正交矩阵QTQQQTIQTQQQTI其中,Q^T是矩阵Q的转置矩阵,I是单位矩阵。正交矩阵Q−1QTQ−1QT格拉姆-施密特正交化是将一组线性无关的向量转化为一组正交向量的过程。该过程不仅能够得到正交向量,而且在需要时,还可以通过标准化得到正交单位向量。假设我们有一组线性无关的向量,格拉姆-施密特过程将其转化为一组正交向量u₁ = v₁以此类推,其中是向量v在向量uₖ上的投影,计算公式为:projuvu⋅vu⋅uu。原创 2025-01-17 10:19:59 · 1151 阅读 · 0 评论 -
线性代数-子空间投影
给定一个向量空间V和它的一个子空间U,我们要将一个向量v投影到子空间U。设投影结果为向量ppprojUvpprojUv向量p是子空间Up ∈ U(投影结果属于子空间)。v - p与子空间U中的所有向量正交,即:v−p⊥Uv−p⊥U这意味着,向量v - p与子空间U中的任意向量uv−p⋅u0∀u∈Uv−p⋅u0∀u∈U换句话说,v - p是子空间U的正交补空间中的一个向量。子空间投影。原创 2025-01-17 10:19:02 · 705 阅读 · 0 评论 -
正交向量和子空间
对于两个向量u和vu⋅v0u⋅v0其中,u \cdot v表示u和vu⋅vu1v1u2v2⋯unvnu⋅vu1v1u2v2⋯unvn如果u和v是n维空间中的向量,内积为零时,它们被认为是正交的。一个集合S是一个向量空间零向量属于子空间:零向量必须属于集合S。0∈S0 \in S0∈S加法封闭性:对任意的两个向量u和v,如果它们都属于子空间S,则它们的和u + v也必须属于S。uv∈。原创 2025-01-17 10:17:21 · 936 阅读 · 0 评论 -
线性代数-图和网络
在图和网络分析中,线性代数的工具,特别是矩阵的概念,广泛应用于研究图的结构、性质、以及网络中的信息流动等问题。图的谱聚类(Spectral Clustering)是利用图的拉普拉斯矩阵的特征向量进行图的划分。这些矩阵使得图的分析和处理变得非常简便,尤其在网络分析中,线性代数的工具可以有效地帮助我们解答许多图相关的问题。根据计算得到的特征向量,我们可以判断每个节点的中心性,通常选择最大特征值对应的特征向量作为网络中心性的度量。拉普拉斯矩阵是图的一种重要矩阵表示方式,广泛应用于图的谱分析、网络流等问题。原创 2025-01-17 10:15:51 · 429 阅读 · 0 评论 -
线性代数-一文带你熟悉小世界图
小世界图是一种具有短小路径长度和高聚类系数的图结构。通过Watts-Strogatz模型,我们可以生成一个具有小世界特性的图,其中节点之间的路径相对较短,而邻近节点之间具有较高的连接密度。小世界网络广泛应用于社交网络、生物学、神经科学等领域,解释了很多网络传播现象。原创 2025-01-17 10:13:21 · 1112 阅读 · 0 评论 -
矩阵空间和秩1矩阵
矩阵空间是由具有相同尺寸的矩阵组成的集合。与向量空间类似,矩阵空间也满足线性代数的加法和数乘的运算规则。因此,矩阵空间中的元素可以进行加法和标量乘法操作。矩阵空间的例子m×nm \times nm×n矩阵空间:包含所有m × n矩阵的空间,记作Mm×nMm×n。对称矩阵空间:包含所有对称矩阵(即矩阵等于其转置的矩阵)的空间,记作SymnSym(n)Symn。对角矩阵空间:包含所有对角矩阵的空间,记作DiagnDiag(n)Diagn。原创 2025-01-17 10:12:31 · 997 阅读 · 0 评论 -
四个基本子空间
列空间 (Col(A)):由矩阵A的列向量生成的空间,表示矩阵的输出空间。零空间 (Null(A)):由所有使Ax = 0的向量组成的空间,表示矩阵A映射到零向量的输入空间。行空间 (Row(A)):由矩阵A的行向量生成的空间,描述矩阵的输入空间。左零空间 (Null(Aᵀ)):由所有使Aᵀy = 0的向量组成的空间,表示矩阵A行向量的正交补。这四个子空间之间的关系与矩阵的秩、解的可解性等性质密切相关。理解它们有助于深入理解矩阵的结构以及如何求解相关的方程组。原创 2025-01-17 10:11:24 · 841 阅读 · 0 评论 -
线性代数-线性相关性、基与维数(通俗易懂
线性相关性:如果向量集合中的某些向量可以表示为其他向量的线性组合,则称这些向量是线性相关的。线性无关性:如果向量集合中的每个向量都不能表示为其他向量的线性组合,则这些向量是线性无关的。形式化定义设有向量集合,它们是V中的元素。如果存在标量c1v1c2v2⋯ckvk0c1v1c2v2⋯ckvk0且不是全为零的标量,则向量集合是线性相关的。如果只有时上述方程成立,则向量集合是线性无关的。基。原创 2025-01-17 10:10:35 · 1205 阅读 · 0 评论 -
线性代数-可解性和解的结构(通俗易懂
可解性:通过增广矩阵的秩来判断方程组是否有解。对于齐次方程Ax = 0,总是有解;对于非齐次方程Ax = b,有解的条件是。解的结构:解的结构可以是唯一解、无穷多解或无解。无穷多解通常出现在矩阵A的列不满秩时,且解空间的维度由自由变量的个数决定。主变量与自由变量:通过高斯消元法确定主变量与自由变量的关系,进而分析解的结构。主变量是方程组解的核心,决定了解空间的方向;自由变量则决定了解空间的自由度。原创 2025-01-17 10:09:50 · 1099 阅读 · 0 评论 -
线性代数-主变量和特解(麻省理工课程
主变量是通过行简化阶梯矩阵(REF)确定的变量,它们与解空间的结构紧密相关。自由变量是在行简化过程中没有被固定的变量,可以取任意值,决定了解空间的自由度。特解是通过为自由变量赋特定值来得到的具体解,通常是齐次方程的零解或非齐次方程的一个特定解。原创 2025-01-17 10:08:29 · 1481 阅读 · 0 评论 -
线性代数-求解Ax=0(麻省理工精选课程
求解线性方程组A x = 0写出方程组,将其表示为矩阵乘法的形式。高斯消元法:通过行变换将矩阵转化为行简化阶梯形式(REF),然后回代求解。主变量与自由变量:通过行简化阶梯矩阵确定主变量和自由变量的关系,进而找到通解。秩-零空间定理:根据秩和零空间的关系来理解解空间的维度。特征向量方法(可选):对于方阵,可以通过特征向量分析求解零空间。原创 2025-01-17 10:07:13 · 516 阅读 · 0 评论 -
线性代数:列空间与零空间(麻省理工课程
列空间(Col(A)):矩阵的列向量张成的空间,表示矩阵的映射值域。零空间(Null(A)):矩阵的解空间,即所有能使A x = 0成立的向量的集合。原创 2025-01-17 10:04:41 · 1079 阅读 · 0 评论 -
史上最易懂!MIT线性代数-第五章:转置,置换,向量空间
定义ATijAji对于所有i12m和j12n(A^T)_{ij} = A_{ji}, \quad \text{对于所有} \ i = 1, 2, \dots, m \ \text{和} \ j = 1, 2, \dots, nATijAji对于所有i12m和j12n例子A123456A142536AT1425361 & 4 \\2 & 5 \\3 & 6 \\A。原创 2025-01-16 09:40:49 · 1539 阅读 · 0 评论 -
MIT线性代数-第四章:LU分解
三、矩阵的LU分解的线性代数解析(附例题)矩阵的LU分解是线性代数中一种重要的矩阵分解方法,它将一个方阵分解为一个下三角矩阵(Lower triangular matrix)( L ) 和一个上三角矩阵(Upper triangular matrix)( U ) 的乘积。LU分解在求解线性方程组、计算矩阵的行列式、逆矩阵以及数值分析中具有广泛的应用。本文将系统地介绍LU分解的定义、存在性、计算方法及其性质,并通过具体例题进行详细解析,以加深理解。目录LU分解的基本概念LU分解的定义LU分解的存在原创 2025-01-16 09:37:12 · 1353 阅读 · 0 评论 -
MIT线性代数-第三章:矩阵乘法和逆
矩阵乘法与逆矩阵是线性代数中不可或缺的工具,它们在理论研究和实际应用中发挥着重要作用。矩阵乘法定义:通过行与列的点积计算得到乘积矩阵的元素。性质:具有结合律和分配律,但通常不满足交换律。几何意义:代表连续应用两个线性变换。计算方法:逐元素计算点积,确保维数匹配。逆矩阵定义:一个矩阵的逆满足 ( AA^{-1} = A^{-1}A = I )。条件:仅方阵且行列式非零的矩阵可逆。性质:逆矩阵唯一,与转置、乘法等运算有特定关系。计算方法:高斯-约旦消元法、伴随矩阵法、矩阵分解法等。应用。原创 2025-01-16 09:35:50 · 1109 阅读 · 0 评论 -
史上最易懂!MIT Linear Algebra线性代数:第二章-矩阵消元
矩阵消元法是线性代数中解决线性方程组的基础工具,通过系统的行变换,将复杂的方程组转化为易于求解的形式。其核心步骤包括构建增广矩阵、进行行简化、回代求解或直接读取解向量。高斯消元法适用于求解上三角矩阵,而高斯-约旦消元法则进一步简化至简化阶梯形矩阵,适用于直接读取解向量或求逆矩阵。关键点总结矩阵表示:将线性方程组表示为 ( A\mathbf{x} = \mathbf{b} ) 的形式,便于应用矩阵理论。行变换的等价性:行交换、行缩放、行加减等操作不改变方程组的解集。Rouché–Capelli 定理。原创 2025-01-16 09:32:42 · 1149 阅读 · 0 评论