torch.load 的基本用法
torch.load()
是 PyTorch 中用于加载由 torch.save()
保存的模型或张量的函数。它支持从文件路径或文件对象加载数据,并可以指定设备(CPU 或 GPU)。
import torch
# 从文件路径加载模型或张量
loaded_data = torch.load('path/to/file.pt')
常用参数说明
f
: 文件路径或文件对象(必需)。map_location
: 指定加载的设备,如'cpu'
或'cuda:0'
。pickle_module
: 用于反序列化的 pickle 模块(默认pickle
)。weights_only
: 是否仅加载权重(安全模式,默认False
)。
# 加载到指定设备
loaded_data = torch.load('model.pt', map_location=torch.device('cuda'))
加载模型权重
通常用于加载预训练模型的权重到现有模型结构:
model = MyModel()
model.load_state_dict(torch.load('weights.pt'))
加载整个模型
如果保存时包含模型结构和权重(通过 torch.save(model, 'model.pt')
),可以直接加载:
model = torch.load('model.pt')
注意事项
- 安全性:加载不受信任的文件可能导致恶意代码执行。建议使用
weights_only=True
限制仅加载张量。safe_data = torch.load('file.pt', weights_only=True)
- 设备兼容性:如果模型保存时在 GPU,加载时需指定
map_location='cpu'
或目标设备。 - 文件格式:支持
.pt
或.pth
后缀,但需确保文件内容为 PyTorch 序列化数据。
错误处理
- 文件不存在时抛出
FileNotFoundError
。 - 数据格式不匹配时抛出
pickle.UnpicklingError
或RuntimeError
。