- 博客(1103)
- 收藏
- 关注
原创 为什么Deepseek拥有智能?大模型教程(超详细)从零基础入门到精通,一篇就够了!
大语言模型(Large Language Model,即LLM),它并不完全等于我们日常说的AI,它仅是AI领域中处理自然语言的一个分支,用于让机器理解和生成人类语言。我们熟知的海外代表ChatGPT和国内代表Deepseek,都属于大语言模型。我们可以把大语言模型想象成一个超级压缩包。这个压缩包里面装的是海量的知识——包括书籍、文章、网站内容等等。这些文本信息经过训练后并不是内容存储,而是转化成了巨量的计算参数被存储了下来。
2025-09-11 11:50:13
642
原创 超越DeepSeek_R1追平GPT5!文心X1.1+飞桨v3.2实战指南,从零入门到精通,一篇就够!
百度发布文心大模型X1.1深度思考模型,采用迭代式混合强化学习框架,在事实性、指令遵循和智能体能力上显著提升。同步发布飞桨框架v3.2,开源ERNIE-4.5-21B-A3B-Thinking模型,升级智能代码助手文心快码至3.5S版本。目前飞桨文心生态开发者达2333万,服务企业76万家,文心快码已服务超1000万开发者,百度内部45%新增代码由AI生成。
2025-09-11 11:41:19
755
原创 AI智能体全攻略:从零基础入门到实战应用,一篇搞定大模型开发与应用!
AI 智能体和以前的 AI 有啥不一样 —— 传统的聊天机器人、AI 助手,本质就是 “只会回话的信息员”。比如你问 “明天广东天气咋样”,它能告诉你温度,但要是说 “帮团队订下周去广东的机票和酒店”,它顶多给你列几个订票链接,剩下的查航班、比价格、填信息,还得你自己动手。但 AI 智能体不一样,它是 “能自己琢磨、自己办事的帮手”。
2025-09-10 14:11:27
831
原创 AI大模型全栈教程:零基础入门到实战,50个核心关键词详解,一篇就够!
单卡显存无法加载完整模型的问题。之所以使用分片推理,主要原因是大模型参数量动辄。
2025-09-10 12:00:52
1010
原创 扣子(Coze)工作流教程(超详细)从零基础到精通:Coze自动抓取小红书数据并写入飞书多维表格,收藏这一篇就够了!
本文详细介绍了如何使用Coze平台创建工作流,实现输入关键词自动抓取小红书热门笔记并写入飞书多维表格的功能。教程包括准备工作(创建飞书多维表格、获取小红书cookie)和工作流搭建步骤(设置参数、添加搜索插件、循环处理、数据去重、添加记录等),帮助自媒体运营者提高效率,省去人工搜索和复制粘贴的步骤。本coze扣子工作流主要功能:只要输入关键词,自动抓取小红书抓相关的热门笔记,把采集到内容写入到飞书多维表格里!不需要人工去搜索,翻译和手动复制粘贴,省时又省力。方便和提高自媒体运营效率。
2025-09-09 11:48:21
1443
原创 GraphRAG多智能体开发实战:基于LangGraph的智能助手构建全攻略,收藏这篇就够了!
本文详细介绍基于LangGraph构建的GraphRAG多智能体系统实现,该系统作为智能食物助手,能处理食谱发现、购物清单生成和超市产品定位等复杂场景。通过结合语义搜索和Cypher查询,在Neo4j知识图谱上执行多步骤推理,解决了传统RAG在结构化关系建模、多步推理和可解释性方面的不足。文章提供了从零开始构建系统的完整指南,展示了GraphRAG在需要结构化数据、复杂关系和可解释性应用中的优势。
2025-09-09 10:49:20
672
原创 AI大模型教程:轻松掌握Dify发票识别,从入门到精通,小白程序员必备!收藏版!
在传统报销流程中,手工录入电子发票信息一直是个棘手难题。财务人员需逐张核对发票上的开票日期、金额、税号等内容,不仅耗费大量时间,而且人工操作难免出现数据录入错误,一旦出现疏漏,后续核查纠错工作更是繁琐,极大影响报销效率和财务数据的准确性。同时,纸质发票易损毁、丢失,且非结构化数据难以直接用于深度分析,难以满足现代财务管理对数据精细化的需求。与之形成鲜明对比的是,在财务、税务及审计等领域,批量识别 PDF 电子发票信息展现出了无可比拟的应用价值。
2025-09-06 12:15:00
954
原创 LangChain大模型开发实战:从零基础到精通,手把手带你构建智能应用(收藏必备!)!
现在我们已经成功调用了两个不同的大模型,除了在初始化模型上有些许不同,其他的地方都是一样的。我们使用system定义模板信息,user定义用户的消息,通过invoke方法就可以调用大模型。content的内容就是大模型最终返回给我们的消息。开始似乎都是非常简单的,但很明显使用大模型构建自己的RAG并没有这么简单。后面我会持续更新LangChain的学习笔记,欢迎关注~
2025-09-06 11:45:00
561
原创 从0到1玩转n8n: AI日报自动化海报生成教程:从零基础到精通,职场提效必备,速收藏!
本文详细介绍了如何使用n8n自动化工具,结合Deepseek API和邮件发送功能,实现AI日报的海报自动化生成。作者从实际操作出发,逐步讲解了n8n的本地部署、海报底图的制作、API key的获取以及工作流的搭建过程。通过HTML节点提取网页内容,利用Basic LLM Chain节点进行内容整理,并最终通过Edit Image节点生成海报图。整个过程详细且实用,适合想要提升职场效率的小白和程序员参考学习。大家好,我是心橙。原大厂UI设计师,现专注于AI智能体定制,职场自动化解决方案。
2025-09-05 10:42:23
742
原创 【收藏必备】AI大模型完全指南:从零基础入门到精通,一篇全掌握!
本文全面介绍AI智能体与大数据技术体系,涵盖数据治理框架、数据湖/仓架构、批流一体技术等核心内容,提供从技术框架到实施落地的完整方案,适合技术人员学习参考,助力读者系统掌握大数据与AI智能体相关知识。2025 AI 智能体大厂逻辑架构图数据治理总体方案批流一体大数据技术框架数据仓库数据湖数据标准数据湖-技术架构技术指标体系项目管理-十大知识域数据平台-数据应用数据治理框架数据治理价值数据治理平台大数据平台数据管理-建设方案。
2025-09-04 10:30:00
885
原创 2025最全AI工作流平台对比:n8n、Coze、Dify三款大模型工具深度解析,从零到精通只需这一篇!
推荐个人结合你的业务,再考虑上面的条件,判断学习哪个平台,避免浪费时间,还得不到想要的结果。想要学习n8n的,可以关注我,带你轻松入门。有工作流需求的,也可以联系,交付稳定的生产级工作流。我是富百,自动化专家,不懂代码,但懂AI,专注AI工作流解决方案。让大家不做重复低效的事情。
2025-09-04 08:30:00
763
原创 【收藏必备】企业级RAG系统实战指南:从Naive RAG到Agentic RAG的全面解析
企业级RAG系统的落地是一个复杂的系统工程,需要从简单到复杂、从单一到模块化、从静态到动态的演进过程。通过本文提供的实践框架,我们可以看到RAG技术已经从最初的Naive RAG发展到更加复杂的Modular RAG和Agentic RAG架构。
2025-09-03 07:15:00
798
原创 【干货收藏】LLMs之后:AI发展的三大前沿方向详解
大型语言模型(LLMs)在诸如理解、生成和跨多种模态推理等任务上的卓越表现,显著推进了人工智能(AI)。尽管取得了这些成就,LLMs仍存在固有限制,包括过时信息、幻觉、效率低下、缺乏可解释性以及特定领域准确性方面的挑战。为了解决这些问题,本调查探讨了LLM时代之后的三个有前景的方向:知识赋能、模型协作和模型共同演化。首先,我们考察了将外部知识整合到LLMs中以增强事实准确性、推理能力和可解释性的方法,包括将知识纳入训练目标、指令调整、检索增强推理和知识提示。
2025-09-02 11:30:20
1025
原创 大模型问答系统深度对比:FAQ与RAG技术详解与应用场景(值得收藏)
FAQ、客服场景:选择基于问答对的方案,低成本、高效率、答案可控。研发文档、法规解读、动态知识库:RAG更胜一筹,灵活性强、扩展性好。未来趋势:随着大模型和向量检索技术的进步,RAG的成本将逐步降低,应用范围会更广。同时,混合方案可能成为企业构建智能问答系统的标配。智能问答系统的选择没有绝对的优劣,关键在于匹配场景需求。在不考虑成本和响应速度的场景下,RAG因其灵活性、深度理解和推理能力,通常优于基于问答对的系统,尤其适用于复杂、动态或需要创新回答的场景。
2025-09-02 11:20:16
772
原创 大模型私有部署教程(11个核心概念/避坑指南/通俗解析)从原理到落地,看这篇就够了!
上面说的这些,只是大模型知识体系里的“基础词汇表”,帮大家搭个初步的认知框架。但这行的知识就像个无底洞,新模型、新术语天天冒出来。真想吃透,光看文章不够,还得自己扒论文、调模型、做项目——毕竟实践才是最好的老师。
2025-08-25 11:24:45
997
原创 AI大模型开发工程师指南(前景/技能/路径全解析)从零基础入门到精通,看这篇就够了!
如今,人工智能(AI)已成为驱动社会发展与产业革新的核心力量。其中,AI大模型作为人工智能领域的核心技术支柱,正引领着新一轮技术革命的浪潮。进入2025年,AI大模型开发工程师无疑成为IT行业中最受追捧的岗位之一,这既是市场需求的直观体现,更是AI技术持续突破的必然结果。
2025-08-25 11:02:10
814
原创 Dify智能体开发(RAG深度解析+知识库避坑指南)从入门到精通,错过血亏!
"以下是与问题相关的文档内容,请提炼核心观点并回答用户问题:{{文档内容}}。用户问题:{{用户提问}}"
2025-08-22 10:55:36
803
原创 大模型架构怎么选?(附4大应用模式)从分析到落地,直接抄作业
它不再是一个“被动问答”的机器人,而是一个具备目标感的智能体,会判断当前任务、设定下一步行动,并协调外部能力来完成任务。它让模型能够请求执行“具体动作”——比如读取数据库、访问第三方接口、调动系统命令等。实际应用中,这套架构可以做什么?自动办公助手:你一句话,它帮你整合日程、会议、提醒、邮件。企业客服系统:AI 主动识别问题类型并调用查询接口,精准回复客户。智能报表生成器:你说“帮我生成上月销售排名”,它去查数据、跑分析、生成报告。这一步的意义在于:我们不再只是“问”,AI 也开始“行动”。
2025-08-22 10:23:58
778
原创 2025企业级AI Agent(智能体)价值及应用报告
其中,大型语言模型的快速发展为AI Agent提供了强大的“大脑”,使其能够处理复杂的任务和决策。随着企业数字化转型的加速,市场对AI解决方案的需求也从概念验证转向实际业务成果的落地,企业不再满足于AI作为“助手”的角色,而是希望其能够成为“正式员工”或“自动化引擎”,处理复杂的业务流程。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-08-20 11:13:17
730
原创 AI智能体落地真相曝光!90%成败在工程架构,大模型仅占10%?企业避坑指南
AI智能体应用真正的落地生态系统应包含14层,从下到上分别为:CPU%/GPU提供商层、基础设施/基础层、数据库、ETL(提取、加载、转换)层、基础模型层、模型路由层、AI智能体协议层、AI智能体编排层、AI智能体认证层、AI智能体可观测层、工具层、认证层、记忆层、前端层等。这些工程层的打通和稳定性,才是让智能体能“用得住”的关键。6、模型路由层:像 OpenRouter、Martian 这样的工具,如同智能体的 "调度员",根据成本、延迟、精度需求,将任务分配给最适配的模型,实现资源最优配置。
2025-08-20 10:50:56
798
原创 大模型工程之RAG(保姆级实战)Ollama+Milvus+Redis从零搭建生产级系统,看这一篇就够了!
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
2025-08-16 11:33:23
900
原创 Coze工作流(保姆级教程)一键生成公众号文章,从零基础到高手,看这一篇就够了!
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。我们点击下方的试运行按钮,input这边我们试着找了一个抖音视频的链接,需要注意的是Quantity是下一个分支才会用到的,所以测第一个分支时数量可以随意写。
2025-08-16 11:10:40
994
原创 Dify-RAG知识库系统(保姆级教程)从零开始到精通设计,看这一篇就够了!
RAG 知识系统遵循三阶段提取-转换-加载 (ETL) 流程进行文档处理,并结合复杂的检索机制进行知识访问。RAG 知识系统是 Dify 中用于知识索引和检索的综合解决方案。它提供了灵活的文档处理、索引技术和检索策略选项,使其能够适应各种用例。该系统的模块化架构允许与工作流和对话系统等其他组件无缝集成。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。
2025-08-15 22:14:30
989
原创 AI系统架构演进史(保姆级教程)从LLM到AI Agent,看懂技术迭代全路径,看这一篇就够了!
文章通过简历筛选这一典型应用场景,系统阐述了 AI 系统发展的四个核心阶段:从最基础的纯 LLM 架构,到增强检索能力的 RAG 系统,再到具备工具调用能力的 AI 工作流,最终发展为具有自主决策能力的 AI Agent。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!随着该领域的发展,新的框架和工程实践不断涌现,推动构建更可靠的 AI 系统。
2025-08-15 21:21:40
498
原创 AI大模型Agent实战教程:打通LangChain+LangGraph+MCP,从零基础到高手,一篇全搞定!
直接MCP客户端:适合简单、直接的场景:适合LangChain生态系统自定义适配器:适合需要深度定制的场景选择合适的集成方式,结合最佳实践,可以构建出强大、可靠的AI应用系统。- END -如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括。
2025-08-14 11:26:10
1481
原创 AI智能体架构教程(从定义到用户需求+架构十问通关)从零基础入门到精通,看这一篇就够了!
智能体”(Agent)这个概念早已有之,最早在人工智能早期研究中,就用来描述一种能感知环境、并据此采取行动的自主系统。但在大模型(LLM, Large Language Model)广泛应用之前,Agent 更多是存在于机器人控制系统、游戏 AI、或一些规则驱动的专家系统中。而当大模型在2023年真正具备了通用语言理解和生成能力后,Agent 的含义开始被重新建构,成为大模型时代最具代表性的AI应用载体。在目前的AI技术语境中,主流认同智能体需要具备以下四种核心能力:核心能力说明。
2025-08-14 11:08:18
869
原创 AI 智能体记忆架构在 LangGraph 中的落地实现
为什么要打造全新AI大模型架构师课记忆是一个系统,用于记录之前交互的信息。对于 AI 智能体(AI Agent)来说,记忆非常重要,因为它能让 AI 智能体记住之前的交互,从反馈中学习,并适应用户的偏好。当 AI 智能体处理更复杂的任务和大量用户交互时,这种能力对于提高效率和用户满意度变得至关重要。:也称为线程范围记忆(thread-scoped memory),通过在会话中维护消息历史来跟踪正在进行的对话。LangGraph 将短期记忆作为 AI 智能体状态的一部分进行管理。
2025-08-13 14:09:18
701
原创 【Agent专题】Agent工作原理:Agent的5个关键阶段:输入处理、理解与分析、决策制定、行动执行以及反馈和学习。
AI Agent的工作始于输入处理,这一过程至关重要,因为它决定了AI Agent能够获取到的基础信息的质量。你能给我一个投资建议吗?这个过程对于AI Agent而言非常重要,因为它类似于人类的思考过程,决定了AI Agent能否准确地解析接收到的信息、提取关键信息、理解其深层含义并做出有效决策。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
2025-08-13 14:02:51
1278
原创 用自定义脚本,解锁RAGFlow中Word复杂表格的终极图文问答
一周前知识星球内有个星友,提了一个关于 Word 文档中的复杂表格处理问题,根据贴出来的样图来看,其中有不少单元格合并的情况,以及有些单元格还嵌入了相关图片。这是个很有价值的问题,也算是在我前期介绍了很多期图文混答的方案基础上,本应该进一步延展介绍的话题。这篇就结合个工程机械的维保案例文档,来具体介绍下自定义脚本的预处理方案,供各位参考。
2025-08-13 11:12:36
870
原创 一文彻底讲透:AI大模型应用架构全解析
引言大模型应用架构是连接基础模型能力与实际业务场景的关键桥梁,它通过系统化的设计,将大模型的潜力转化为可落地的解决方案。。这种架构设计不仅提高了系统的可扩展性和稳定性,也增强了模型在不同业务场景中的适应性和价值输出能力。本文将从数据层、预处理层、知识与模型中台层、模型层与训练优化层、应用层及技术支撑层六个维度,全面剖析大模型应用架构的组成与功能。
2025-08-12 11:19:22
1511
原创 LLM 系列教程,今天学习RAG!
回顾全文,我们可以清晰地看到,RAG 并非一个高深莫测的算法,而是一种极其务实且强大的工程思想。知识局限、事实幻觉和私域无知。通过将 LLM 的通用推理能力与企业外部或内部的特定知识源相结合,RAG 成功地为模型装上了“事实的锚”,使其回答既能保持语言的流畅自然,又能做到内容的准确可靠。对于任何希望利用大模型技术创造价值的企业而言,RAG 都是那把不可或缺的“金钥匙”。它是一座至关重要的桥梁,连接了公域的通用语言智能与私域的、构成企业核心竞争力的专有数据。
2025-08-12 11:06:45
547
原创 Qwen3又又又又发布新模型Qwen3-Coder-Flash,小参数MoE-30B-A3B,平替480B
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
2025-08-01 11:53:15
1391
原创 扣子Coze智能体实战:OCR+LLM搭建超好用的文档智能问答Bot
近期Coze开源的消息刷爆了朋友圈,这对于想通过搭建Agent解决复杂问题的企业开发者而言简直是超大好消息!通过Coze平台,企业用户可以通过零代码或低代码的方式,快速搭建出解放生产力的AI工作流,辅助员工高效完成各类的复杂任务。今天,我就来分享一个用Coze搭建文档智能问答Bot的保姆级教程。图片来自扣子官方我们经常会遇到从产品手册、技术白皮书、合同条款、内部报告……等文档中快速精准地提取所需信息的情况,这时可靠的文档智能问答Bot就能成为我们的得力助手。
2025-08-01 11:33:56
748
原创 Qwen3再再再次发布MoE新模型,30B激活3B,榜单超自家225B
具有以下特点:类型:因果语言模型训练阶段:预训练与后训练参数总数:总共305亿,激活33亿非嵌入参数数:299亿层数:48注意力头数(GQA):Q为32,KV为4专家数:128激活专家数:8原生支持262144。注意:该模型仅支持非思考模式,不会在其输出中生成块。同时,无需再指定。更多详情,包括基准评估、硬件要求和推理性能,请参阅我们的博客、GitHub和文档。
2025-07-30 15:03:03
808
原创 GPT-5基准测试泄露,被曝两天后发布?复刻Minecraft震撼开挂网友直呼封神
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!因为ChatGPT有各种型号的模型,每个模型都有自己独特的功能和突出的特点,如果GPT-5真的是每个单一模型最佳部分的集合,很显然用户体验将彻底改变。当时的关键信息是:这个令人惊叹的前沿模型,将首次统一两个系列的模型,集中了o系列在推理方面的突破,以及GPT系列在多模态方面的突破。
2025-07-30 14:29:35
907
原创 GPT-5实锤,悄悄上线代号「龙虾」!版本号曝光,实测编程惊人能改屎山代码
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。而GPT-5的好消息,就意味着即使预训练的边际收益递减也没关系,因为提升AI模型能力的真正关键,就在于后训练阶段的强化学习。WebDev Arena是一个大模型能力匿名评测的网站,使用相同的提示词,在双盲的情况下,给你认为最好的模型投票。
2025-07-29 12:02:42
1208
原创 后端变全栈,终于可以给大家推出我的LangChain学习小站了!
这个学习小站,是我作为一个后端程序员跨出“全栈”的尝试,也是在 扣子空间 的帮助下第一次完成“产品级”的个人项目。更重要的是,它将为更多像你我一样的普通开发者打开一扇窗,让 建站 不再只属于头部大厂和开源大佬,而是属于每一个愿意学习、动手、尝试的你!如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
2025-07-26 11:54:14
671
原创 开源Qwen凌晨暴击闭源Claude!刷新AI编程SOTA,支持1M上下文
编程Agent王座,国产开源模型拿下了!就在刚刚,阿里通义大模型团队,直接刷新AI编程SOTA——不仅在开源界超过DeepSeek V3和Kimi K2,连业界标杆、的Claude Sonnet 4都比下去了。网友当即实测了一把小球弹跳,效果是酱婶的:效果之强,甚至引来惊呼:简直改变游戏规则。毕竟,这可是的!现在大家不用再每月花200刀买Claude Code了!Qwen3-Coder包括多个尺寸,其中最强版本Qwen3-Coder-480B-A35B-Instruct是。
2025-07-24 11:21:08
846
原创 一文搞懂2049年改变世界的三大AI技术
给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!在他眼中,真正改变人类文明的不是单一技术突破,而是三大AI技术的融合革命。截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。在这个充满变数的未来中,最重要的不是恐惧AI取代人类,而是学会与AI共舞,在人机协作中发挥人类独特的价值。
2025-07-24 10:59:57
618
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人